首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
The imaging system formed by an annular left-handed material (LHM) lens as well as the evanescent waves in the lens are simulated numerically with a finite-difference time-domain (FDTD) method. For b - a 〉 λ (a and b are respectively the inner and outer radii of the annular lens, and λ is the wavelength), when a point source is placed at an internal grid point, we demonstrate that the evanescent waves are produced around the internal interface, and cannot propagate outwards. As for b - a 〈λ ),, the evanescent waves appear around both the internal and the external interfaces, which remarkably implies the coupling between the two interfaces. Hence it can be inferred that the evanescent waves around the external interface participating in the super-resolution imaging result from the coupling of the evanescent waves around the interface. Moreover, the partly uncomprehended properties of the evanescent waves in the LHM slab are also disclosed. It is conducive to understanding the evanescent waves in the LHMs further.  相似文献   

2.
Based on the orthogonality relations among the modes in left-handed-material (LHM) slab waveguides (SWGs), we derive the coupled equations among the modes caused by imperfect surfaces, and compute the transmission loss due to mode conversion. The computation shows that the transmission loss is very large, which is due to three facts: (1) there exist slow waves in the LHM SWG, whose electric field is mainly distributed in the surface; (2) the absence of fundamental node-less modes, so the fundamental modes have a node, whose electric field is also mainly distributed in the surface, and (3) the different focusing effects of the random RHM and LHM imperfections cause the electric field to suffer from severe deformations aggravated by the electric field distribution of the guided wave and the slow wave, which of course dissipates the power carried by the guided wave more severely. Therefore, we can safely conclude that the LHM SWG is unsuitable for transmitting the fundamental modes with a node.  相似文献   

3.
For applications such as near-field target detection and tumor hyperthermia with a fiat left-handed metamaterial (LHM) lens, a microwave will be focused in the heterogeneous and lossy medium. Different from the focusing of a fiat LHM lens in vacuum as reported in most previous studies, the medium loss and heterogeneity will affect the focusing performance of the LHM lens. Numerical simulations indicate that the medium loss will degrade the focusing resolution, while the heterogeneity of random variability within ±30% will affect the focusing resolution to a limited extent. Both the loss and heterogeneity of the medium will shift the focal point away from the image plane. When focusing in a medium with different permittivity values, an LHM lens will also have different focusing resolutions due to different electric thicknesses.  相似文献   

4.
We report the imaging properties of a two-dimensional rectangular-lattice photonic crystal (PC) slab consisting of rectangular metallic rods immersed in a dielectric background. By simulating the electromagnetic wave propagation through such a PC slab with the finite-difference time-domain method, we find that a point source placed in the vicinity of the PC slab can form a good-quality image through the slab. The frequency region where a good-quality image is formed can be controlled by choosing the direction along which the PC slab surface normal is placed.  相似文献   

5.
A practical interference lithography scheme based on surface plasmon polaritions (SPPs) is suggested. In this scheme, a micro-cylinder-lens array is employed to generate the evanescent wave (EW) carrying much energy. When the top of the cylinder lenses are in close contact with a metal film coated on a resist, the energy of EW will launch strong SPPs and form enhanced interference nanopatterns in the resist. The simulation results confirm that a high quality nanopattern with a critical dimension of λ/7 can be achieved in the resistance. The anaJysis results indicate that the height of the cylinder lenses can provide a large tolerance to decrease the fabrication difficulty of this element.  相似文献   

6.
孙良奎  程海峰  周永江  王军 《中国物理 B》2012,21(5):55201-055201
An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.  相似文献   

7.
We present a comprehensive experimental study of terahertz (THz) wave propagation utilizing surface plasmon polaritons (SPPs) on the interfaces of a thin dielectric core layer sandwiched between two corrugated metallic claddings. THz wave impinges on the structured surfaces at normal incidence. Long-lasting oscillation propagation features are observed in the temporal waveform after traveling through the periodic arrays. The enhanced THz transmission can be achieved due to the coupling between incident waves to SPPs at the bottom and top interfaces. The finite element method is used to simulate the field distribution and the transmission mode in the waveguide. The hybrid waveguide with low absorption has great potential applications in THz integrated devices.  相似文献   

8.
When a force is directly applied to the propagation surface of surface acoustic wave (SAW), the velocity of SAW is varied. Then the loading force can be introduced by effective material coefficients and the velocity of SAW is calculated via the general Green's Function. The experimental results accord with the above numerical calculation very well. It also shows that the propagation loss will increase with the force load, and the velocity variation of SAW is proportional to the force loaded to the surfaces of SAW resonators, which has a high sensitivity about 5.97 m/s·N.  相似文献   

9.
The polarization of a D-shaped fiber is modulated after immersing it in magnetic fluid(MF)and applying a magnetic field.Theoretical analysis predicts that magneto-optical dichroism of MF plays a key role in light polarization modulation.During light polarization modulation,the evanescent wave polarized parallel to the magnetic field has greater loss than its orthogonal component.Light polarization of a D-shaped fiber with a wide polished surface can be modulated easily.High concentration MF and a large magnetic field all have great ability to modulate light polarization.  相似文献   

10.
<正>Taking into account both gain/loss and time-dependent atomic scattering length,this paper analytically derives an exact bright solitary wave in a cigar-shaped attractive condensate in the presence of an expulsive parabolic potential. Due to the balance of the scattering length and gain/loss,the bright solitary wave is shown to have constant amplitude. Especially,it is found that the bright solitary wave is accelerated by expulsive force,whose velocity can be modulated by changing the axial and transverse angular frequencies.The results are in good agreement with the experimental observations by Khaykovich et al(2002 Science 296 1290).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号