首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we presented a study of pulse scattering by rough surfaces based on the first-order Kirchhoff approximation which is applicable to rough surfaces with RMS slope less than 0.5 and correlation distance l≳λ. However, there has been an increased interest in enhanced backscattering from rough surfaces, study of which requires inclusion of the second-order Kirchhoff approximation with shadowing corrections. This paper presents a theory for the two-frequency mutual coherence function in this region and shows that the multiple scattering on the surface gives rise to an additional pulse tail in the direction of enhanced backscattering. The theory predicts pulse broadening approximately 20% greater than that caused by single scattering alone for a delta-function incident pulse and typical surface parameters. Analytical results are compared with Monte Carlo simulations and millimetre-wave experiments for the one-dimensional rough surface with RMS height 1λ and correlation distance 1λ, showing good agreement.  相似文献   

2.
Abstract

Recently, we presented a study of pulse scattering by rough surfaces based on the first-order Kirchhoff approximation which is applicable to rough surfaces with RMS slope less than 0.5 and correlation distance l?λ. However, there has been an increased interest in enhanced backscattering from rough surfaces, study of which requires inclusion of the second-order Kirchhoff approximation with shadowing corrections. This paper presents a theory for the two-frequency mutual coherence function in this region and shows that the multiple scattering on the surface gives rise to an additional pulse tail in the direction of enhanced backscattering. The theory predicts pulse broadening approximately 20% greater than that caused by single scattering alone for a delta-function incident pulse and typical surface parameters. Analytical results are compared with Monte Carlo simulations and millimetre-wave experiments for the one-dimensional rough surface with RMS height 1λ and correlation distance 1λ, showing good agreement.  相似文献   

3.
Scattering by pressure-release sinusoidal surfaces in three dimensions is analyzed using the Fresnel phase approximation and realistic source and receiver directivity approximations. Geometrical shadowing and second-order scattering are explicitly included to explore the validity of the Kirchhoff approximation. No restrictions on the surface heights and slopes are made. The "goodness" of the resulting expressions is verified by requiring the pressure scattered by a sinusoidal surface to reduce to the image solution as the surface amplitude goes to zero. The first-order scattered pressure achieves a very good approximation to the image solution, and the second-order scattered pressure goes to zero, as expected, under this requirement. The theory is compared with available experimental scattering measurements, and the agreement is good. Because the slopes on the experimental surface are very steep, shadowing corrections are indispensible to achieving accurate first and second order scattering results. Shadowing has a greater impact on the scattering prediction than the second-order scattering contribution. This suggests that the Kirchhoff approximation may be more robust when incorporated into a theory including a detailed shadowing treatment as well as the Fresnel phase approximation and a good directivity approximation.  相似文献   

4.
This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

5.
Abstract

This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

6.
Neighbors TH  Bjørnø L 《Ultrasonics》2006,44(Z1):e1461-e1465
Low frequency sea surface sound backscattering from approximately 100 Hz to a few kHz observed from the 1960s broadband measurements using explosive charges to the Critical Sea Test measurements conducted in the 1990 s is substantially higher than explained by rough sea surface scattering theory. Alternative theories for explaining this difference range from scattering by bubble plumes/clouds formed by breaking waves to stochastic scattering from fluctuating bubble layers near the sea surface. In each case, theories focus on reverberation in the absence of the large-scale surface wave height fluctuations that are characteristic of a sea that produces bubble clouds and plumes. At shallow grazing angles, shadowing of bubble plumes and clouds caused by surface wave height fluctuations may induce first order changes in the backscattered signal strength. To understand the magnitude of shadowing effects under controlled and repeatable conditions, scale model experiments were performed in a 3 m x 1.5 m x 1.5 m tank at the Technical University of Denmark. The experiments used a 1 MHz transducer as the source and receiver, a computer controlled data acquisition system, a scale model target, and a surface wave generator. The scattered signal strength fluctuations observed at shallow angles are characteristic of the predicted ocean environment. These experiments demonstrate that shadowing has a first order impact on bubble plume and cloud scattering strength and emphasize the usefulness of model scale experiments for studying underwater acoustic events under controlled conditions.  相似文献   

7.
张海龙  刘丰珍  朱美芳 《物理学报》2014,63(17):177303-177303
采用斜入射热丝化学气相沉积技术(OAD-HWCVD),研究了气流入射角度(θ)对氢化非晶硅(a-Si:H)薄膜表面和微结构的影响.实验发现,薄膜厚度为1μm时,均方根粗糙度与tanθ成指数关系;在入射角度为75°时,薄膜表面由自仿射表面转变为mound表面.采用拉曼谱和红外谱表征了硅薄膜的微结构随气流入射角度的变化.在薄膜转变为mound表面生长之前,随入射角度的增加,准局域的影蔽效应使得薄膜中微空洞的数目及尺寸增加,导致薄膜微结构因子升高、致密度下降、薄膜质量变差.在薄膜转变为mound表面生长之后,非局域的影蔽效应导致大尺度的空洞,同时薄膜中以Si-Hn(n 2)形式存在的氢增多.本文以非晶硅薄膜为例,结合标度理论,分析了薄膜生长过程中的表面形貌和微结构与影蔽效应的关系.  相似文献   

8.
宋延松  杨建峰  李福  马小龙  王红 《物理学报》2017,66(19):194201-194201
光学表面加工误差引起的散射是影响光学系统成像性能的重要因素.描述表面总散射能量的均方根粗糙度是评定光学表面粗糙度的通用指标,但因其未能体现散射能量的空间分布,在表征光学表面散射对具体光学系统杂散光性能影响时存在准确度不足的局限.本文基于全积分散射及双向散射分布函数理论,针对杂散光抑制要求提出一种光学表面粗糙度控制的新方法.首先通过分析确定光学表面纹理中影响系统杂散光的空间频率范围,然后度量该频率带限范围内的表面均方根粗糙度,作为控制光学表面粗糙度的指标.以太阳磁场望远镜(MFT)为例进行方法验证,确定主镜表面纹理有效频率范围为0—18 mm~(-1),分析了主镜表面带限均方根粗糙度对MFT杂散光性能的影响.结果表明,带限均方根粗糙度与MFT杂散光性能之间的关系稳定性能大幅提高,由此验证了采用带限均方根粗糙度描述光学表面粗糙度,能更为准确地控制其对具体光学系统杂散光性能的影响.  相似文献   

9.
In this paper, based on the fundamental formulae of the first-order and second-order Kirchhoff approx-imation mad with consideration of the shadowing effect, the backscattering enhancement of the one-dimensional very rough fractal sea surface with Pierson-Moskowitz spectrum is studied under the second-order Kirchhoff approximation at microwave frequency. The numerical results are compared with those of the first-order Kirchhoff approximation and integral equation method. The dependencies of the bistatic scattering cross section and the backscattering enhancement on the incident angle, fractal dimension, and windspeed over the sea surface are analyzed in detail.  相似文献   

10.
Using the second-order perturbation theory, we obtain an analytical expression for the electromagnetic field scattered from a dielectric surface with inhomogeneities that are shallow and small in comparison with the wavelength. This expression is used to analyze the critical phenomena in thermal radio emission of a periodically rough water surface, and the second order of the specific scattering cross section of radio waves, in the short and medium ranges of wavelengths, from a rough surface (in particular, from a sea surface with waves).Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 27, No. 1, pp. 48–55, January, 1984.  相似文献   

11.
王蕊  郭立新  麻军 《中国物理 B》2009,18(8):3422-3430
Electromagnetic wave scattering from multilayers consisting of two two-layer Gaussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.  相似文献   

12.
The integral equation model (IEM) has been developed over the last decade and it has become one of the most widely used theoretical models for rough-surface scattering in microwave remote sensing. In the IEM model the shadowing function is typically either omitted or a form based on geometric optics with single reflection is used. In this paper, a shadowing function for one-dimensional rough surfaces which incorporates multiple scattering, finite surface length and both monostatic and bistatic configurations is developed. For any uncorrelated process, the resulting equation can be expressed in terms of the monostatic statistical shadowing function with single reflection, derived in the preceding companion paper. The effect of correlation between the surface slopes and heights for a Gaussian surface is studied to illuminate the range over which such correlations can be ignored. It is found that while the correlation between surface slopes and heights in the monostatic statistical shadowing function with single reflection can be ignored, when calculating the average shadowing function with double reflection the correlation between slopes and heights between points must be incorporated.  相似文献   

13.
Based on the Kirchhoff approximation for rough surface scattering and by calculating the shadowing function of the rough surface, the formula of the scattering cross section of the dielectric rough surface is presented with consideration of the shadowing effect for the optical wave incidence. It is obtained that in comparison with the conventional Kirchhoff solution, the shadowing effect should not be neglected for the optical wave scattering from the rough surface. The influence of the shadowing effect for different incidence angle, surface root mean square slope, and surface roughness on the scattering cross section is discussed in detail.  相似文献   

14.
Abstract

The integral equation model (IEM) has been developed over the last decade and it has become one of the most widely used theoretical models for rough-surface scattering in microwave remote sensing. In the IEM model the shadowing function is typically either omitted or a form based on geometric optics with single reflection is used. In this paper, a shadowing function for one-dimensional rough surfaces which incorporates multiple scattering, finite surface length and both monostatic and bistatic configurations is developed. For any uncorrelated process, the resulting equation can be expressed in terms of the monostatic statistical shadowing function with single reflection, derived in the preceding companion paper. The effect of correlation between the surface slopes and heights for a Gaussian surface is studied to illuminate the range over which such correlations can be ignored. It is found that while the correlation between surface slopes and heights in the monostatic statistical shadowing function with single reflection can be ignored, when calculating the average shadowing function with double reflection the correlation between slopes and heights between points must be incorporated.  相似文献   

15.
We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.  相似文献   

16.
When solving electromagnetic rough-surface scattering problems, the effect of shadowing by the surface roughness often needs to be considered, especially as the illumination angle approaches grazing incidence. This paper presents the Ricciardi-Sato, as well as the Wagner and the Smith formulations for calculating the monostatic and bistatic statistical shadowing functions from a one-dimensional rough stationary surface, which are valid for an uncorrelated Gaussian process with an infinite surface length. In this paper, these formulations are extended to include a finite surface length and any uncorrelated process. The inclusion of a finite surface length is needed to extend the single-reflection shadowing function to the more general multiple-reflection case, presented in the following companion paper. Comparisons of these shadowing functions with the exact numerical solution for the shadowing (using surfaces with Gaussian and Lorentzian autocorrelation functions for a Gaussian process) shows that the Smith formulation without correlation is a good approximation, and that including correlation only weakly improves the model. This paper also presents a method to include the shadowing effect in the electromagnetic scattering problem.  相似文献   

17.
通过测量空间辐射反演海雾气溶胶的微观特性是一种重要的遥感方法,但是海雾对辐射的反射会受到海面背景的影响。该工作研究了海雾与海面的耦合多次散射。利用Mie理论研究了海雾气溶胶的单次散射特性,利用辐射传输理论研究太阳光在无下垫面海雾中传输多次散射特性;在基尔霍夫近似下研究了风驱粗糙海面的散射特性,并考虑了海面的遮蔽效应,得到了风驱海面随风速的反射函数。根据累加法研究了海雾和海面的耦合散射,计算结果表明海雾在有粗糙海面作为背景的情况下,其整体反射有较大增强。  相似文献   

18.
The second-order local curvature approximation (LCA2) is a theory of rough surface scattering that reproduces fundamental low and high frequency limits in a tilted frame of reference. Although the existing LCA2 model provides agreement with the first order small perturbation method up to the first order in surface tilt, results reported in this paper produce a new formulation of the model that achieves consistency with perturbation theory to first order in surface height and arbitrary order in surface tilt. In addition, extension of the modified LCA to third order is presented, and allows the theory to match the second-order small perturbation method to arbitrary order in surface tilt. Crucial to the development of the theory are a set of identities involving relationships among the small perturbation method (i.e. low frequency) and Kirchhoff approximation (i.e. high frequency) kernels; a set of new identities obtained in our derivations is also presented. Sample results involving 3D electromagnetic scattering from penetrable rough surfaces, as well as 2D scattering from Dirichlet sinusoidal gratings, are provided to compare the new results with the existing LCA2 model and with other rough surface scattering theories.  相似文献   

19.
After the three-dimensional self-affine fractal random surface simulation, we use the optical scattering theory to calculate the deep Fresnel region speckle(DFRS) under consideration of the more strict shadowing effect. The evolution of DFRS with the scattering distance and the intensity probability distribution are studied. It is found that the morphology of the scatterer has an antisymmetric relationship with the intensity distribution of DFRS, and the effect of micro-lenses on the scattering surface causes the intensity probability distribution of DFRS to deviate from the Gaussian speckle in the high light intensity area.  相似文献   

20.
R. Loudon 《物理学进展》2013,62(7):813-864
A review is given of progress in the theoretical and experimental study of the Raman effect in crystals during the past ten years. Attention is given to the theory of those properties of long-wavelength lattice vibrations in both cubic and uniaxial crystals which can be studied by Raman scattering. In particular the phenomena observed in the Raman scattering from crystals which lack a centre of inversion are related to the theory. The angular variations of the scattering by any type of lattice vibration in a crystal having any symmetry can be easily calculated using a complete tabulation of the Raman tensor. Recent measurements of first-order lattice vibration spectra are listed. A discussion of Brillouin scattering is included. The relation of second-order Raman spectra to critical points in the lattice vibration density of states is discussed, and measurements of the second-order spectra of diamond and the alkali halides are reviewed. The theory and experimental results for Raman scattering by electronic levels of ions in crystals are examined, and proposals for Raman scattering by spin waves, electronic excitations across the superconductive gap and by plasmons are collected together. Finally, the prospects for applying lasers as sources for Raman spectroscopy are discussed, and progress in the new technique of stimulated Raman scattering is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号