首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the Si–SiO2 interface morphology of low-dose low-energy separation by implanted oxygen materials was investigated by transmission electron microscopy and atomic force microscopy. The Si–SiO2 interface morphology and the RMS roughness are strongly affected by the implantation conditions and the annealing process. Three main types of the domains including round, square, and pyramid shapes with the step-terrace structure were observed on the buried SiO2 surface. Round domains are observed in the early stage of the annealing process, while the square and pyramid domains are observed after the high temperature annealing. The mean RMS roughness decreases with increasing time and annealing temperature, while in the 1350 °C 4-h annealed samples, the mean RMS roughness decreases with either increasing the implantation dose or decreasing implantation energy. The scaling analysis shows that the Si–SiO2 interfaces were found to be self-affine on the short length scales with a roughness exponent above 0.50. Qualitative mechanisms of Si–SiO2 surface flattening are presented in terms of the variations of morphological features with the processing conditions.  相似文献   

2.
Nd2Fe14B Φ phase crystallites were formed in Nd16.7Fe65.5B17.8 thin films prepared by RF sputtering with subsequent heat treatment. The 2 μm-thick films were deposited onto 0.1 mm Mo sheets at an average substrate temperature (Ts) of 365°C. The enhanced magnetic properties of the magnetically anisotropic thin films were investigated using different heating rates (hr) of 10°C, 20°C, 50°C and 100°C/min in an annealing experiment. Transformation from the amorphous phase to the crystalline phase is clearly manifested by the formation of fine crystallites embedded as a columnar matrix of Nd2Fe14B phase. High-resolution scanning electron microscope data of the cross-section of the annealed films show columnar stacking of Nd2Fe14B crystallites with sizes <500 nm. Transmission electron microscope observations revealed that the microstructure of these films having out-of-plane magnetization consists of uniformly distributed Φ phase with grain size around 400 nm together with small Nd rich particles. This grain size of Φ phase is comparable to the single domain particle diameter of Nd2Fe14B. Significant change in iHc, 4πMr and 4πMs with hr was confirmed. Annealing conditions with a heating rate of 50°C/min to an annealing temperature (Ta) of 650°C for 30 min was consequently found to give optimum properties for the NdFeB thin films. The resulting magnetic properties, considered to be the effect of varying hr were iHc= 1307–1357 kA/m, 4πMr=0.78–1.06 T and 4πMs=0.81–1.07 T.  相似文献   

3.
In2S3 layers have been grown by close-spaced evaporation of pre-synthesized In2S3 powder from its constituent elements. The layers were deposited on glass substrates at temperatures in the range, 200–350 °C. The effect of substrate temperature on composition, structure, morphology, electrical and optical properties of the as-grown indium sulfide films has been studied. The synthesized powder exhibited cubic structure with a grain size of 63.92 nm and S/In ratio of 1.01. The films grown at 200 °C were amorphous in nature while its crystallinity increased with the increase of substrate temperature to 300 °C. The films exhibited pure tetragonal β-In2S3 phase at the substrate temperature of 350 °C. The surface morphological analysis revealed that the films grown at 300 °C had an average roughness of 1.43 nm. These films showed a S/In ratio of 0.98 and a lower electrical resistivity of 1.28 × 103 Ω cm. The optical band gap was found to be direct and the layers grown at 300 °C showed a higher optical transmittance of 78% and an energy band gap of 2.49 eV.  相似文献   

4.
Microalloying additions of Ag (0.1 at.%) increase the hardening response of Al–Zn–Mg alloys to elevated temperature ageing in the range 100–200°C due to the formation of a high density of very fine η′ precipitate plates. The present study employed transmission electron microscopy (TEM) and three-dimension atom probe (3DAP) to study the early stages of ageing in the alloy Al–1.8Zn–3.4Mg–0.1Ag (at.%) in an attempt to identify the role of Ag in stimulating precipitation hardening. During isothermal ageing at 90°C, the hardening response is attributed to a high density of Zn–Mg–Ag rich solute clusters and GP zones. During ageing at 150°C, η′ precipitates nucleate at Zn–Mg–Ag rich solute clusters, the former growing as {111} platelets with an average composition of approximately 20 at.% Zn, 20 at.% Mg and 1.4 at.% Ag. The 3DAP data indicates that the co-segregation of Zn and Ag and subsequently Zn and Mg atoms precedes the formation of the Zn–Mg–Ag rich solute clusters. The GP zones and η′ precipitates were observed to possess a Zn:Mg ratio close to 1:1, whereas the equilibrium η precipitates possessed compositions consistent with MgZn2. Furthermore, partitioning of Ag was observed inside all precipitate phases, viz. G.P. zones, η′ and η.  相似文献   

5.
Pure and rare earth doped gadolinium oxide (Gd2O3) waveguide films were prepared by a simple sol–gel process and dip-coating method. Gd2O3 was successfully synthesized by hydrolysis of gadolinium acetate. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study the thermal chemistry properties of dried gel. Structure of Gd2O3 films annealed at different temperature ranging from 400 to 750 °C were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Gd2O3 starts crystallizing at about 400 °C and the crystallite size increases with annealing temperature. Oriented growth of (4 0 0) face of Gd2O3 has been observed when the films were deposited on (1 0 0) Si substrate and annealed at 750 °C. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and propagation loss of the film measured by scattering-detection method is about 2 dB/cm. Luminescence properties of europium ions doped films were measured and are discussed.  相似文献   

6.
Smooth, epitaxial cerium dioxide thin films have been grown in-situ in the 450–650°C temperature range on (001) yttria-stabilized zirconia (YSZ) substrates by metal–organic chemical vapor deposition (MOCVD) using a new fluorine-free liquid Ce precursor. As assessed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution electron microscopy (HREM), the epitaxial films exhibit a columnar microstructure with atomically abrupt film-substrate interfaces and with only minor bending of the crystal plane parallel to the substrate surface near the interface and at the column boundaries. With fixed precursor temperature and gas flow rate, the CeO2 growth rate decreases from 10 Å/min at 450°C to 6.5 Å/min at 540°C. The root-mean-square roughness of the films also decreases from 15.5 Å at 450°C to 4.3 Å at 540°C. High-quality, epitaxial YBa2C3O7−x films have been successfully deposited on these MOCVD-derived CeO2 films grown at temperatures as low as 540°C. They exhibit Tc=86.5 K and Jc=1.08×106 A/cm2 at 77.4 K.  相似文献   

7.
The effects of oxidation on the microstructural modification and on the electrical resistivity and mechanical strength of a hot-pressed AlN–SiC–MoSi2 electroconductive ceramic composite were studied. The kinetic of the oxidation was also evaluated. After the oxidation at temperatures below 1000 °C samples do not gain weight, due to simultaneous formation of SiO2 and evaporation of MoO3 formed by the oxidation of MoSi2. However, the AlN/SiC matrix disables the “pesting” phenomena and strength degradation, despite the fact that at these temperatures MoSi2 oxidizes rapidly. At temperatures above 1000 °C, the composite gains weight due to protective mullite layer formation on the surface, that provides a good oxidation resistance for use at higher temperatures. The kinetics of the oxidation follows the parabolic law. The possible rate-controlling mechanism is the diffusion of oxygen through the mullite-rich surface oxide scale.  相似文献   

8.
Fe–Ni alloys below the Invar region with compositions Fe100−xNix (x=21, 24, and 27 at%) were prepared by high-energy ball milling technique (mechanical alloying). The as-milled samples, characterized by X-ray diffraction and Mössbauer spectroscopy, contain a mixture of (BCC) and γ (FCC) phases, whereas the samples annealed at 650°C for 0.5 h show a single γ (FCC) phase displaying a single line Mössbauer spectrum at room temperature (RT). At low temperature, the Mössbauer spectra of annealed Fe76Ni24 and Fe73Ni27 alloys show the existence of a magnetically split pattern together with a broad singlet, which are ascribed to a high-moment ferromagnetic Ni-rich phase and a low-moment Fe-rich phase, respectively. The Fe-rich phase in annealed Fe76Ni24 alloy, which is paramagnetic at RT, undergoes antiferromagnetic ordering at 40 K, estimated from the dramatic line broadening of its spectrum, giving rise to a small hyperfine field (e.g. 2 T at 6 K). The coexistence of these phases is attributed to phase segregation occurring in these alloys as a result of enhanced atomic diffusion. The stability of these alloys towards martensitic (FCC→BCC) transformation at low temperatures is discussed in connection with the Fe–Ni phase diagram below 400°C.  相似文献   

9.
Biaxially textured Ni–5 at.%W substrates have been prepared by cold rolling, followed by three different annealing routes. In this paper, the processes of melting Ni and W metals, flat rolling, various annealing methods are described in detail. The Ni–5 at.%W tapes annealed under either high vacuum or flowing Ar (7% H2) gas were characterized by X-ray pole figures, ODF, EBSD as well as AFM analysis. The texture analysis indicated that as fabricated tapes have a sharp cube texture formed after annealing at a wide temperature range of 800–1100 °C. The high quality of cube orientation on tapes was obtained after a two-step annealing (TSA), where the percentage of the cube texture component was as high as 93.5% within a misorientation angle smaller than 8° from EBSD analysis. Furthermore, it was also observed that the number of twin boundaries in this tape decreased with respect to that of tapes annealed both in vacuum and one-step gas annealing. From AFM on 1 μm2 areas, it was concluded that the roughness (RMS) on the tape surface reached 0.98 nm.  相似文献   

10.
Accurate impedance measurements on differently sized samples of lead–zirconate–titanate (PbZr0.53Ti0.47O3, PZT) have been analyzed with a CNLS procedure, resulting in the separation of the ionic and electronic conductivities over a temperature range from 150 to 630 °C. At 603 °C the electronic conductivity shows approximately a (PO2)1/4 dependence, while the ionic conductivity remains constant. Below the Curie transition temperature the oxygen non-stoichiometry becomes frozen-in and the conductivities are strongly dependent on the sample history with respect to temperature sequence and ambient PO2. A tentative interpretation assumes defect association, i.e. formation of neutral [VPb–VO··]× complexes, and electron-hole transfer between lead sites and lead vacancies to control the oxygen ion conductivity in the tetragonal phase.

Annealing PZT-based devices at about 600 °C under low oxygen pressure (1 Pa oxygen) effectively decreases the low temperature electronic conductivity by a factor of 100 and the ionic conductivity by a factor of 10–15 with respect to normal air processing.  相似文献   


11.
Thin Ca films were evaporated on Si(1 1 1) under UHV conditions and subsequently annealed in the temperature range 200–650 °C. The interdiffusion of Ca and Si was examined by ex situ Auger depth profiling. In situ monitoring of the Si 2p core-level shift by X-ray photoemission spectroscopy (XPS) was employed to study the silicide formation process. The formation temperature of CaSi2 films on Si(1 1 1) was found to be about 350 °C. Epitaxial growth takes place at T≥400 °C. The morphology of the films, measured by atomic force microscopy (AFM), was correlated with their crystallinity as analyzed by X-ray diffraction (XRD). According to measurements of temperature-dependent IV characteristics and internal photoemission the Schottky-barrier height of CaSi2 on Si(1 1 1) amounts to qΦBn=0.25 eV on n-type and to qΦBp=0.82 eV on p-type silicon.  相似文献   

12.
In this study, we will develop the influences of the excess x wt% (x=0, 1, 2, and 3) Bi2O3-doped and the different fabricating process on the sintering and dielectric characteristics of 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3 ferroelectric ceramics with the aid of SEM and X-ray diffraction patterns, and dielectric–temperature curves. The 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 ceramics are fabricated by two different processes. The first process is that (Na0.5Bi0.5)TiO3 composition is calcined at 850 °C and BaTiO3 composition is calcined at 1100 °C, then the calcined (Na0.5Bi0.5)TiO3 and BaTiO3 powders are mixed in according to 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions. The second process is that the raw materials are mixed in accordance to the 0.95 (Na0.5Bi0.5)TiO3–0.05 BaTiO3+x wt% Bi2O3 compositions and then calcining at 900 °C. The sintering process is carried out in air for 2 h from 1120 to 1240 °C. After sintering, the effects of process parameters on the dielectric characteristics will be developed by the dielectric–temperature curves. Dielectric–temperature properties are also investigated at the temperatures of 30–350 °C and at the frequencies of 10 kHz–1 MHz.  相似文献   

13.
Local atomic and crystal structures around Cu and Mn atoms in Mn1.68Cu0.6Ni0.48Co0.24O4 spinel samples fabricated by metal–organic decomposition synthesis at different annealing temperatures were investigated by X-ray absorption fine structure analysis. There are two distinct copper cations, Cu1+ and Cu2+, both of which maintain tetrahedral coordination. The bond-length distances are Cu1+–O = 2.00 Å and Cu2+–O = 1.80 Å. The manganese cations are for the most part octahedral. The spinels prepared at low temperature (600 °C) contain smaller (Mn4+–O = 1.88 Å) undistorted MnO6 octahedrons corresponding to Mn4+ valence, whereas the manganese octahedrons in high-temperature materials (800 °C and higher) were larger and had a pronounced tetragonal distortion pertaining to Mn3+ oxidation state (Mn3+–O = 1.93 Å and 2.11 Å). By rising the fabrication temperatures, relative concentration of the species of Mn4+ and Mn3+ varies as a result of the reaction represented by Cu1+ + Mn4+  Cu2+ + Mn3+, implying irreversible temperature-induced structural transformation. Atomic coordinates in the low-temperature phase are similar to those found in the ideal cubic spinel with oxygen parameter u = 0.27, whereas local environments of the Cu and Mn atom correspond to the tetragonal CuMn2O4 phase (space group I41/amd). Unlike in CuMn2O4, orientation of the lattice distortions is random, however, the long-range cubic spinel structure is retained at all time.  相似文献   

14.
The influence of the annealing time on the corrosion resistance of a Pr–Fe–Co–B–Nb alloy with the addition of 0.1 wt% P was investigated here using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The cast ingot alloys were annealed at 1100 °C for 10, 15 and 20 h. The specimens were immersed for 30 days in naturally aerated 0.02 M Na2HPO4 solution at room temperature, during which period the evolution of the electrochemical behavior was assessed using EIS. The results indicated that the corrosion resistance of the Pr14FebalCo16B6Nb0.1P0.25 alloy was related to the annealing time and, hence, to its microstructure. Annealing at 1100 °C for 10 h was insufficient to eliminate the Fe- phase from the alloy microstructure, whereas annealing for 15 and 20 h removed an increasing amount of Fe- phase, thereby increasing the alloy's corrosion resistance.  相似文献   

15.
0.9Pb(Zn1/3Nb2/3)–0.1BaTiO3 (0.9PZN–0.1BT) of perovskite structure has been successfully prepared by mechanically activating mixed oxides of PbO, ZnO, Nb2O5, BaO and TiO2. The novel mechanochemical technique skips the phase-forming calcination step at an intermediate temperature that is always required in both the conventional solid state reaction and chemistry-based precursor routes. Ultrafine 0.9PZN–0.1BT particles of perovskite structure were formed when the constituent oxides were mechanically activated for more than 10 h. The powder was sintered to a density of 96% theoretical density at 1100°C for 1 h. The sintered 0.9PZN–0.1BT exhibits perovskite structure and a peak dielectric constant of 8800 at the Curie temperature of 60°C when measured at a frequency of 100 Hz.  相似文献   

16.
The magnetic properties of nanocomposite melt-spun magnets with composition Sm16−xCo68+xB16 (x=0–10, 2 at% interval) and Sm8Co92−yBy (y=10–18, 2 at% interval) have been studied systematically. Several ribbons were fabricated with a wheel speed of 50 m/s, followed by annealing in the temperature range of 700–800°C for 2.5–40 min. XRD results and magnetization versus temperature curves showed that almost all of the samples were composed of the tetragonal Sm2Co14B and rhombohedral SmCo12B6 phases which are not magnetically hard at room temperature. However, a relatively high coercivity in the range of 3.5–5.5 kOe has been obtained in these samples. The highest coercivity of 5.5 kOe and a very promising β value of −0.28%/°C were obtained in Sm8Co74B18 ribbons annealed at 750°C for 5 min. The high coercivities are attributed to the small grain size of the 2 : 14 : 1 phase, in which the large surface areas enhance its effective anisotropy, and make it uniaxial type.  相似文献   

17.
Ohmic contacts to p-type CuCrO2 using Ni/Au/CrB2/Ti/Au contact metallurgy are reported. The samples were annealed in the 200–700 °C range for 60 s in flowing oxygen ambient. A minimum specific contact resistance of 2 × 10−5 Ω cm2 was obtained after annealing at 400 °C. Further increase in the annealing temperature (>400 °C) resulted in the degradation of contact resistance. Auger Electron Spectroscopy (AES) depth profiling showed that out-diffusion of Ti to the surface of the contact stacks was evident by 400 °C, followed by Cr at higher temperature. The CrB2 diffusion barrier decreases the specific contact resistance by almost two orders of magnitude relative to Ni/Au alone.  相似文献   

18.
Ti substituted BiFe1−xTixO3+δ films have been prepared on indium–tin oxide (ITO)/glass substrates by the sol–gel process. The films with x=0.00–0.20 were prepared at an annealing temperature of 600 °C. X-ray diffraction patterns indicate that all films adopt R3m structure and the films with x=0 and 0.10 show pure perovskite phase. Cross-section scanning shows the thickness of the films is about 300 nm. Through 0.05 Ti substitution, the 2Pr increases to 8.30 μC/cm2 from 2.12 μC/cm2 of the un-substituted BiFeO3 film and show enhanced ferroelectricity at room temperature. The 2Pr values are 2.63 and 0.44 μC/cm2 for the films with x=0.01 and 0.2, respectively. Moreover, the films with x=0.05 and 0.10 show enhanced dielectric property since the permittivity increases near 150 at the same measuring frequency. Through the substitution of Ti, the leakage conduction is reduced for the films with x=0.05–0.20.  相似文献   

19.
Deposition of Ni as contact on 4H–SiC has been investigated. Ni/4H–SiC samples were annealed at temperatures of 600, 800 and 950 °C for 30 min and were non-destructively characterized by soft X-ray emission spectroscopy (SXES) using synchrotron radiation as excitation. Si L2,3 SXE showed the formation of Ni2Si for all annealing temperatures. The C K SXE indicated the formation of graphite and graphitic carbons at annealing temperatures of 950 °C and below 800 °C, respectively.  相似文献   

20.
In very rare circumstances, X-ray photoemission spectra of copper in spinel oxides exhibit a “negative binding energy shift”. The origin of such an anomalous XPS chemical shift was investigated. A metastable Ni0.48Co0.24Cu0.6+xMn1.68−xO4 (0 < x < 0.6) spinel was fabricated at 600 °C using a low-temperature solution technique. The binding energy of the 2p3/2 level of copper (930.8 eV) is found 1.9 eV lower than that of Cu0 (932.7 eV). XPS and EXAFS studies revealed that the post-thermal annealing between 600 and 800 °C undergoes an irreversible cubic-to-tetragonal phase transformation through oxidation–reduction reaction Cu1+ + Mn4+  Cu2+ + Mn3+, and only tetrahedral Cu1+ species in the cubic spinel shows this anomalous chemical shift. The negative shift of the core levels was correlated to an equal shift of the Cu 3d valence band levels. XPS valence bands from the samples annealed at different temperatures were compared to DOS calculations. The DOS computations were performed with FEFF-8.1 code using experimental crystal parameters established by the EXAFS analysis. It was found that the tetrahedral Cu1+ in the 600 °C annealed sample exhibits localization of the 3d orbitals showing behavior characteristic to zinc. The completely filled and isolated 3d electron shell appears as a false valence band edge in the XPS spectrum. The position of the Cu 3d, and other core levels, is established by oxygen pinning the Cu valence band levels and by the fixed value of the p–d gap characteristic to the tetrahedral copper environment in this spinel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号