首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The influence of the hydrogen content in several physical aspects of carbonaceous microfibres obtained from a mixture of hydrogen and hydrocarbon gas is examinated in this study. The hydrogen content is evaluated behalf a measurement of the fibres density. These changes of content depend on the manufacturing process and further treatments of the fibres. The surface energy is established after contact angle evaluation. There is not a clear relation between the surface energy and the porosity, which is a very relevant parameter in order to establish the hydrogen storage capacity of all materials.The fibres have been evaluated using Kelvin probe force microscopy (KPFM), which provides a map of the surface potential. These measurements suggest a relation between the surface potential and the hydrogen adsorbed in the surface of the fibres.  相似文献   

2.
Human plasma fibrinogen (HPF) was observed by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM) conducted in non-contact mode. The HPF was adsorbed on a highly oriented pyrolytic graphite (HOPG) substrate as single molecules, as aggregated bundles, and as aggregated fibers. Topographic and phase images confirmed structural changes in the HPF after exposure to air, while topographic and KPFM images confirmed fibers with the width of a single HPF molecule. Additionally, KPFM confirmed the surface potential difference between the HPF and the HOPG, and periodical potential drop reflecting the E and D domains in the fiber.  相似文献   

3.
To understand the effects of tellurium (Te) inclusions on the device performance of CdZnTe radiation detectors, the perturbation of the electrical field in and around Te inclusions was studied in CdZnTe single crystals via Kelvin probe force microscopy (KPFM). Te inclusions were proved to act as lower potential centers with respect to surrounding CdZnTe matrix. Based on the KPFM results, the energy band diagram at the Te/CdZnTe interface was established, and the bias-dependent effects of Te inclusion on carrier transportation is discussed.  相似文献   

4.
Single sheets of hexagonal boron nitride (h-BN) on transition metals provide a model system for layered insulating materials as well as a functional substrate for molecules and metal clusters. The progress in the understanding of h-BN layers on transition metals was mainly driven by scanning tunnelling microscopy (STM) and photoelectron spectroscopy (PES) measurements within the last decade, while direct measurements of mechanical and electrical properties are still rare. Our investigations of the two-dimensional (2D) h-BN nanomesh on a Rh(111) substrate by high-resolution noncontact atomic force microscopy (nc-AFM) reveal a complex surface structure including a frequently observed contrast inversion. Detailed 2D force spectroscopy measurements are revealing towards a mechanical elastic deformation of the h-BN monolayer caused by the tip-sample interaction. Furthermore, Kelvin probe force microscopy (KPFM) and spectroscopy measurements show local work function variations of the nanomesh, proving the results obtained by PES but additionally providing detailed local information.  相似文献   

5.
Sublimated graphene grown on SiC is an attractive material for scientific investigations. Nevertheless the self limiting process on the Si face and its sensitivity to the surface quality of the SiC substrates may be unfavourable for later microelectronic processes. On the other hand, chemical vapor deposited (CVD) graphene does not posses such disadvantages, so further experimental investigation is needed. In this paper CVD grown graphene on 6H-SiC (0 0 0 1) substrate was investigated using scanning probe microscopy (SPM). Electrical properties of graphene were characterized with the use of: scanning tunnelling microscopy, conductive atomic force microscopy (C-AFM) with locally performed C-AFM current–voltage measurements and Kelvin probe force microscopy (KPFM). Based on the contact potential difference data from the KPFM measurements, the work function of graphene was estimated. We observed conductance variations not only on structural edges, existing surface corrugations or accidental bilayers, but also on a flat graphene surface.  相似文献   

6.
The use of scanning thermal microscopy (SThM) and Kelvin probe force microscopy (KPFM) to investigate silicon nanowires (SiNWs) is presented. SThM allows imaging of temperature distribution at the nanoscale, while KPFM images the potential distribution with AFM-related ultra-high spatial resolution. Both techniques are therefore suitable for imaging the resistance distribution. We show results of experimental examination of dual channel n-type SiNWs with channel width of 100 nm, while the channel was open and current was flowing through the SiNW. To investigate the carrier distribution in the SiNWs we performed SThM and KPFM scans. The SThM results showed non-symmetrical temperature distribution along the SiNWs with temperature maximum shifted towards the contact of higher potential. These results corresponded to those expressed by the distribution of potential gradient along the SiNWs, obtained using the KPFM method. Consequently, non-uniform distribution of resistance was shown, being a result of non-uniform carrier density distribution in the structure and showing the pinch-off effect. Last but not least, the results were also compared with results of finite-element method modeling.  相似文献   

7.
Scanning capacitance microscopy (SCM) and Kelvin probe force microscopy (KPFM) have been used to characterise self-assembled Ge nanoislands embedded in silicon. High contrast in capacitance and in surface potential are found between areas with nanostructures and areas without any nanostructures. The local dC/dV spectroscopy shows flat band voltage shift attributed to the presence of electric charges in the nanostructures. The KPFM contrast has been correlated with the band structure offsets between the nanostructure and the matrix barrier. Effects of the charging have been measured from the dC/dV curve and discussed in terms of the wetting layer influence that contributes to the escape of the charges when percolation of charges is observed.  相似文献   

8.
P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively. In view of spatial energy spectrum in micro-scale provided by KPFM, it is going to be a powerful tool to characterize the local electronic properties of organic semiconductors.  相似文献   

9.
The advancement of nanotechnology relies on the understanding of electrical connection to individual molecules. Electrostatic surface potential measurements of self-assembled monolayers can provide insight into the structural and electronic properties of molecules attached to surfaces. In this paper we report on the electrostatic potential of poly(phenylene) thiol molecules bound to gold surfaces. Kelvin force microscopy is used to probe self-assembled monolayers of a series of phenyl, biphenyl, and triphenyl thiol molecules. The dipole moments of the isolated molecules have been determined and show similar electronic trends. A difference in polarity between the isolated molecules and the electrostatic surface potential of a monolayer attached to gold reflects the electron transfer on to the bound molecule.  相似文献   

10.
The electronic properties of ZnO surfaces and interfaces has until recently been relatively unexplored. We have used a complement of ultrahigh vacuum scanning electron microscope (SEM)-based, depth-resolved cathodoluminescence spectroscopy (DRCLS), temperature-dependent charge transport, trap spectroscopy, and surface science techniques to probe the electronic and chemical properties of clean surfaces and interfaces on a nanometer scale. DRCLS reveals remarkable nanoscale correlations of native point defect distributions with surface and sub-surface defects calibrated with capacitance trap spectroscopies, atomic force microscopy, and Kelvin probe force microscopy. The measurement of these near-surface states associated with native point defects in the ZnO bulk and those induced by interface chemical bonding is a powerful extension of cathodoluminescence spectroscopy that provides a guide to understanding and controlling ZnO electronic contacts.  相似文献   

11.
A new method of theoretical simulation for Kelvin probe force microscopy (KPFM) imaging on semiconductor or metal samples is proposed. The method is based on a partitioned real space (PR) density functional based tight binding (DFTB) calculation of the electronic states to determine the multi-pole electro-static force, which is augmented with the chemical force obtained by a perturbation treatment of the orbital hybridization. With the PR-DFTB method, the change of the total energy is calculated together with the induced charge distribution in the tip and the sample by their approach under an applied bias voltage, and the KPFM images, namely the patterns of local contact potential difference (LCPD) distribution, are obtained with the minimum condition of the interaction force. However, since the interaction force is due to electro-static multi-poles, the spatial resolution of the KPFM images obtained by PR-DFTB is limited to the nano-scale range and an atom-scale resolution cannot be attained. By introducing an additional chemical force, i.e., the force due to the orbital hybridization, we succeeded in reproducing atom-scale resolution of KPFM images. Case studies are performed for clean and impurity embedded Si surfaces with Si tip models.  相似文献   

12.
Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and work function (Kelvin probe) measurements have been used to study the initial interaction of clean Al(111), (100) and (110) surfaces with oxygen at room temperature. The oxidation process was found to be surface orientation dependent, but a common feature has been always observed on the three low-index surfaces: they show two distinct phases, i.e. a chemisorbed phase followed then by an oxidized phase. From analysis of AES, LEED and Kelvin probe results, an adsorption mechanism of O on Al for each surface orientation is proposed.  相似文献   

13.
《Current Applied Physics》2020,20(12):1391-1395
Muscovite mica is a widely accepted substrate for scanning probe microscopy (SPM) investigations. However, mica has intrinsic properties that alter samples and obstruct their analysis due to free charges build-up, ionic exchange and water adsorption taking place at the surface. In addition to interfacial phenomena, there is a growing interest in electrostatic charges on insulators as they are crucial in diverse applications. Despite the high demand for studies of this nature, experimental set-ups capable of resolving charge build-up at the micro-scale are still scarce and technically limited. Here, we report the imaging of surface charge dissipation on freshly cleaved mica by Kelvin-probe Force Microscopy (KPFM). A local electrostatic charge micro-domain was generated by friction between an atomic force microscope (AFM) tip and mica, and its decay was tracked by two-dimensional mapping using KPFM. We found time-dependent charge dissipation, which is attributed to the adsorption of water molecules on mica surface.  相似文献   

14.
In order to investigate the surface heterogeneity of silicon oxynitride films, we observed the nanoscale variation of the surface potential by Kelvin probe force microscopy (KFM), the molecular bonding characteristics by Fourier transform infrared spectrometry (FTIR), and the wetting behavior by contact angle measurement. Nitrogen incorporation into silicon oxynitride films influenced the decrease in the surface potential and the polar component of the surface free energy. We present the first correlation between the nanoscale measurement of the surface potential and the macroscopic measurement of the surface free energy in silicon oxynitride films grown by a standard plasma‐enhanced chemical vapor deposition (PECVD) technique. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We measured the pattern of charging by contact electrification, following contact between a polydimethylsiloxane (PDMS) stamp and a glass substrate with gold electrodes. We used scanning Kelvin probe microscopy to map the surface potential at the same regions before and after contact, allowing a point-by-point comparison. After contact, the mean surface potential of the glass shifted by 360 mV and micron-scale heterogeneity appeared with a magnitude of ∼100 mV. The gold electrodes showed charge transfer but no discernible heterogeneity. These results show that contact electrification causes heterogeneity of surface potential even on non-polymer surfaces such as glass under ambient conditions.  相似文献   

16.
Work function (WF) and surface photovoltage evolution of films can be measured using the Kelvin probe technique, and further analysis of the photoelectronic behavior can provide information on the energy level structure. In this paper, a theoretical analysis to measure surface photovoltage using Kelvin probe technique is presented. Based on this analysis, the surface photovoltage and its time-resolved evolution process as well as the energy level structure of ZnO films are determined using a scanning Kelvin probe. The present study therefore provides a simple and practical methodology for the characterization of the electronic behavior of films.  相似文献   

17.
In this contribution, we present a technique which allows for the investigation of the local channel potentials of a poly(3-hexylthiophene) (P3HT)-based top-gate field-effect transistor. Usually it is impossible to measure the channel potentials of a top-gate transistor with a Kelvin probe force microscope (KPFM) due to the electrical shielding of the top-gate or the weak capacitive coupling of the tip through the thick substrate to the channel. However, by depositing the entire device on a water solvable polyvinyl alcohol layer, devices can be completely detached from the substrate, creating a free-standing functioning organic field-effect transistor (OFET). After detaching, it is possible to laminate the inverted device on another substrate. This method grants access to the usually hidden channel of the top-gate OFET, and therefore KPFM measurements can be performed.  相似文献   

18.
We measured surface potential (SP) on a ?-conju-gated thiophene oligomer monolayer film deposited on a metallic substrate by Kelvin probe force microscopy using a piezoelectric cantilever. Since the cantilever has a relatively large spring constant (calculated as about 150 N/m), the frequency modulation detection method was used for tip-sample distance regulation in order to achieve high-sensitivity SP measurement. A contact potential difference between monolayer regions and the metallic substrate was clearly observed in an SP image. Furthermore, an apparent change in a contrast of the SP image was observed while the sample was irradiated with ultraviolet light.  相似文献   

19.
We show the first direct measurement of the potential distribution within organic light emitting diodes (OLEDs) under operation and hereby confirm existing hypotheses about charge transport and accumulation in the layer stack. Using a focused ion beam to mill holes in the diodes we gain access to the cross section of the devices and explore the spatially resolved potential distribution in situ by scanning Kelvin probe microscopy under different bias conditions. In bilayer OLEDs consisting of tris(hydroxyquinolinato) aluminum (Alq3)/N, N ′‐bis(naphthalene‐1‐yl)‐N,N ′‐bis(phenyl) benzidine (NPB) the potential exclusively drops across the Alq3 layer for applied bias between onset voltage and a given transition voltage. These findings are consistent with previously performed capacitance–voltage measurements. The behavior can be attributed to charge accumulation at the interface between the different organic materials. Furthermore, we show the potential distribution of devices with different cathode structures and degraded devices to identify the cathode interface as main culprit for decreased performance. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
An estimation carried out via scanning Kelvin probe microscopy (SKPM) confirms that valleys on the initial surface of n-type InN layers correspond to a decrease in electrostatic potential by at least several millivolts. At the same time, surfaces subjected to anodic oxidization (the oxide thickness is no less than 10 nm) do not support this correspondence in remarkable number of cases. This is apparently caused by fluctuations in the oxide??s charge. Strong oxidization is found to lead to a substantial increase in the energy of the conduction-band bottom on the InN surface. The average potential of an oxidized surface is demonstrated to exceed that of the initial one and be positive with respect to the SKPM probe. The measured data enable us to infer that the electron work function of InN anodic oxide is less than 5 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号