首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A theoretical model is proposed to describe the emission of partial dislocations by grain boundaries in nanocrystalline materials during plastic deformation. Partial dislocations are assumed to be emitted during the motion of grain-boundary disclinations, which are carriers of rotational plastic deformation. The ranges of the parameters of a defect structure in which the emission of partial dislocations by grain boundaries in nanocrystalline metals are energetically favorable are calculated. It is shown that, as the size of a grain decreases, the emission of partial dislocations by its boundary becomes more favorable as compared to the emission of perfect lattice dislocations.  相似文献   

2.
Abstract

Molecular dynamics simulations have been performed to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 9.0 and 24 nm. A melting–cooling method has been used to generate the initial samples: this method produces realistic samples that contain defects inside the grains such as dislocations and vacancies. The results of uniaxial tensile tests applied to these samples reveal the presence of a critical mean grain size between 16 and 20 nm, for which there is an inversion of the conventional Hall–Petch relation. The principal mechanisms of deformation present in the samples correspond to a combination of dislocations and grain boundary sliding. In addition, this analysis shows the presence of sliding planes generated by the motion of perfect edge dislocations that are absorbed by grain boundaries. It is the initial defects present inside the grains that lead to this mechanism of deformation. An analysis of the atomic configurations further shows that nucleation and propagation of cracks are localised on the grain boundaries especially on the triple grains junctions.  相似文献   

3.
赵宇龙  陈铮  龙建  杨涛 《物理学报》2013,62(11):118102-118102
采用晶体相场模型模拟获得了平均晶粒尺寸从11.61–31.32 nm的纳米晶组织, 研究了单向拉伸过程纳米晶组织的强化规律的微观变形机理. 模拟结果表明: 晶粒转动、晶界迁移等晶间变形行为是纳米晶材料的主要微观变形方式, 纳米晶尺寸减小, 有利于晶粒转动, 使屈服强度降低, 显示出反霍尔-佩奇效应.当纳米晶较小时, 变形量超过屈服点达到4%, 位错运动开启, 其对变形的直接贡献有限, 主要通过改变晶界结构而影响变形行为, 位错运动破坏三叉晶界, 引发晶界弯曲, 促进晶界迁移. 随纳米晶增大, 晶粒转动困难, 出现晶界锯齿化并发射位错的现象. 关键词: 晶体相场 纳米晶 反霍尔-佩奇效应 微观变形  相似文献   

4.
An original two-step “three phase” elastic–viscoplastic scale transition model is developed based on the combined self-consistent and Mori–Tanaka schemes. A coated inclusion is embedded within a matrix, wherein the inclusion represents grain interiors and the coating of the inclusion mimics the effects of grain boundaries and triple junctions. The predominant behavior within the grain interiors is captured through dislocation glide, whereas grain boundary (GB) dislocation emission and absorption, as well as thermally assisted GB sliding, describe the deformation processes within the coating describing the GB affected zone. Furthermore, an imperfect interface is assumed between the inclusion and the coating to account for viscoplastic grain boundary sliding along a stick-slip mechanism. Results and discussion focus on the competitive roles of GB sliding, GB dislocation emission/absorption, dislocation sweep in grain cores and collective dislocation plasticity, and the origins of the pronounced strain rate sensitivity of fcc NC materials.  相似文献   

5.
A three-dimensional model for the generation of split dislocations by grain boundaries in nanocrystalline A1 is proposed. In terms of this model, rectangular glide split-dislocation half-loops nucleate at glide lattice dislocation loops pressed to grain boundaries by an applied stress. The level of the applied stress and the grain size at which the emission of such dislocation half-loops becomes energetically favorable are determined. The dependences of the stacking-fault width on the grain size and the applied stress are found. The anomalously wide stacking faults experimentally detected in nanocrystalline A1 are shown to be caused by high internal stresses forming in the stages of preparation, treatment, or local loading of nanocrystalline samples.  相似文献   

6.
D. V. Bachurin 《哲学杂志》2013,93(23):2653-2667
The kinetics of relaxation of disclination quadrupoles formed within triple junctions of grains during plastic deformation are studied. The calculations are made using the discrete dislocation model for disclinations by simulating the climb of dislocations. Exponential relationships are obtained for the relaxation of the strength and elastic energy of disclination quadrupoles with a characteristic time proportional to the cube of grain size. The distribution of vacancy fluxes along grain boundaries (GBs) during the relaxation of a disclination quadrupole is studied in detail. The relation between continuum and discrete dislocation approaches to a study of the GB recovery process is considered. Characteristics of each relaxation stage are studied. A hierarchy of characteristic relaxation times for dimerent grain size ranges is constructed and it is show that in nanocrystalline materials the spreading time of trapped lattice dislocations can depend on the grain size.  相似文献   

7.
马文  祝文军  陈开果  经福谦 《物理学报》2011,60(1):16107-016107
用分子动力学方法研究了纳米多晶铝在冲击加载下的冲击波阵面结构及塑性变形机理.模拟研究结果表明:在弹性先驱波之后,是晶界间滑移和变形主导了前期的塑性变形机理;然后是不全位错在界面上成核和向晶粒内传播,然后在晶粒内形成堆垛层错、孪晶和全位错的过程主导了后期的塑性变形机理.冲击波阵面扫过之后留下的结构特征是堆垛层错和孪晶留在晶粒内,大部分全位错则湮灭于对面晶界.这个由两阶段塑性变形过程导致的时序性塑性波阵面结构是过去未见报道过的. 关键词: 晶界 塑性变形 冲击波阵面 分子动力学  相似文献   

8.
The influence of intragranular slip on grain boundary sliding is studied in originally compatible zinc bicrystals with symmetric tilt boundary. The experiment is designed to separate different effects of intragranular slip on the boundary sliding and establish their mechanisms. Grain boundary sliding with and without development of intragranular slip is observed. The rate of sliding accompanied by slip is more than five times of that without slip. A good correlation between the boundary sliding and intragranular slip prior to slide hardening is established. Slide hardening followed by the negative sliding near one end of the boundary and strain hardening in the boundary vicinity, are observed at the last stages of deformation. For the case of formation of slip induced glissile grain boundary dislocations of opposite signs the possibility of their contribution to total grain boundary sliding, is analyzed. The effect of the increase in the rate of sliding is explained in terms of the accommodation of sliding by slip and appearance of additional glissile grain boundary dislocations of one sign due to strain incompatibility. Contribution of these different dislocation mechanisms to the increase in the sliding rate is determined for the stage of deformation preceding slide hardening. It is supposed that the effect of slide hardening and negative sliding as well as boundary curving is created by non-smooth boundary and small degree of incompatibility caused by straining.  相似文献   

9.
纯物质晶界结构及运动的晶体相场法模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
任秀  王锦程  杨玉娟  杨根仓 《物理学报》2010,59(5):3595-3600
采用晶体相场模型,分别模拟了纯物质小角度晶界和大角度晶界结构及变形过程中的晶粒转动及晶界迁移.结果表明,小角度晶界迁移的主要机理是构成晶界的位错的滑移和攀移,而大角度晶界的迁移主要依靠晶界两侧原子的跳动及晶界位错等缺陷的运动. 关键词: The phase field crystal model was used to simulate the structure of the small angle and the large angle grain boundary (GB) the grain rotation and the GB migration during deformation. Simulated results show that the dislocation glide and climb are the ma  相似文献   

10.
A theoretical model is suggested which describes the generation of nanoscale voids (nanovoids) at grain boundaries (GBs) in deformed nanocrystalline and nanocomposite materials. In the framework of the model, nanovoids are generated in the stress fields of the dislocations characterized by large Burgers vectors and formed at GB steps and triple junctions due to intense intergrain sliding. The model accounts for experimental observations of nanovoids at GBs in deformed nanomaterials, reported in the literature.  相似文献   

11.
Grain Growth During Superplastic Deformation   总被引:2,自引:0,他引:2  
Significant grain growth occurring during superplastic deformation is related to the micro-mechanism of superplastic flow. Observations performed on the deformed surface of superplastically deformed tensile and shear Pb-62%Sn samples and bi-axially formed AA7475 samples directly indicate that cooperative grain boundary sliding, i.e. sliding of grain groups, is accompanied by cooperative grain boundary migration that can result in an enhanced grain growth. Such a long range correlation in migration of sliding grain boundaries is related to movement of grain boundary dislocations having a step associated with its core. Observed correlation between grain size and strain measured in different regions of a superplastically formed Ti-alloy part and alignment of grain boundaries along shear surfaces support coupling of grain boundary sliding and migration. A model of grain growth considering climb of cellular dislocations, topological defects in a grain array, has been expanded to incorporate gliding and mixed cellular dislocations.  相似文献   

12.
B. Hyde§  M. J. Caturla¶ 《哲学杂志》2013,93(32):3795-3807
Atomistic computer simulations were performed to investigate the mechanisms of grain-boundary sliding in bcc Fe using molecular statics and molecular dynamics with embedded-atom method interatomic potentials. For this study we have chosen the Σ?=?5, (310)[001] symmetrical tilt boundary with tilt angle θ?=?36.9°. Sliding was determined to be governed by grain-boundary dislocation activity with Burgers vectors belonging to the displacement shift complete lattice. The sliding process was found to occur through the nucleation and glide of partial grain-boundary dislocations, with a secondary grain-boundary structure playing an important role in the sliding process. Interstitial impurities and vacancies were introduced into the grain boundary to study their role as nucleation sites for the grain-boundary dislocations. While vacancies and H interstitials act as preferred nucleation sites, C interstitials to not.  相似文献   

13.
A theoretical model is proposed for the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics under deformation at low and high temperatures. The nucleation of a dislocation loop in a crystalline grain is considered an ideal nanoscopic shear whose magnitude (the Burgers vector of the dislocation) increases gradually as the loop is nucleating. The characteristics of the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics based on cubic silicon carbide are calculated. It is shown that, in general, the homogeneous nucleation of a dislocation loop in nanocrystalline ceramics at high temperatures proceeds in two stages, namely, the athermal nucleation of a loop of a “noncrystallographic” partial dislocation and its thermally activated transformation into an ordinary partial lattice dislocation loop.  相似文献   

14.
This article proposes a new constitutive model to account for effects of the finest grains, with sizes ranging from 2 to 4 nm, on the mechanical behaviours of nanocrystalline (NC) materials. In this model, the normal nanograins (ranging from 20 to 100 nm) were treated as though they were composed of a grain interior (GI) and a grain boundary (GB) affected zone (GBAZ). The finest grains were considered to be part of the GBAZ, denoted as super triple junctions (STJs). For the initial plastic deformation stage of the NC materials, a phenomenological constitutive equation was suggested to predict the deformation behaviours of the GBAZ. The formation of GB dislocation (GBD) pileups provides dramatic strain hardening in deformed NC materials and thereby enhances their ductility. Then, the constitutive equations to describe the plastic deformation of the GI and the GBAZ lattice region were established. In this stage, the GBAZ are already saturated with GBD pileups, and GI deformation is the dominant mechanism. Finally, the mechanical model for the NC materials with the finest grains was built using the self-consistent method, and an overall moderate “work hardening,” sustained over a long range of plastic strain, was predicted. The effects of TJs/STJs on the deformation mechanism were quantitatively analysed. The analysis demonstrated that the existence of the finest grains will simultaneously lead to good strength and good ductility.  相似文献   

15.
Lin Yuan  Peng Jing     《哲学杂志》2016,96(22):2397-2411
Two types of nanocrystalline polycrystalline silver models in bulk, film and nanowire forms were constructed with layer-grained or equiaxed grain morphologies and average grain sizes of ~7.8 and ~14.7 nm. Uniaxial tensile deformation was performed to investigate the effect of grain morphology and free surface on the plastic deformation behaviour under the strain rate of 5 × 108 and 107 s?1 at 0.1 K. Grain Boundary (GB) orientation and dimensions in layer-grained morphology promoted the formation of sessile dislocation structures. Some dislocations interacted with each other and some dislocations got obstructed by stacking faults. However, the resulting configurations did not last long enough to cause strain hardening. Strain softening was observed in all models except for the layer-grained models in bulk form, where steady plastic flow was observed after yield. The location and orientation of free surfaces with respect to GBs imposed geometric constraints on the deformation mechanisms (GB sliding and formation of sessile dislocations) which produced asymmetric stress states that influenced the elastic as well as plastic response of the material. The yield stress and flow stress were much smaller at lower strain rate simulations. The proportion of perfect dislocations increased as the strain rate decreased from 5 × 108 to 107 s?1 due to the decrease of applied stress. Dislocations were mainly emitted from grain boundaries or triple junctions at both high and low strain rate deformations. These results provided insights into the understanding of layer-grained nanocrystalline materials and the synthesis of materials with both high strength and ductility.  相似文献   

16.
A polycrystal plasticity model is proposed to predict the unique rolling texture of Cu/Nb nanostructured multilayers. At this length scale, the model accounts for the interface between Cu and Nb layers by computing the aggregate response of composite grains using a viscoplastic self–consistent scheme. Each composite grain is divided into Cu and Nb crystals with the interface parallel to the rolling plane, and compatibility and equilibrium are enforced across the interface. A latent hardening effect is introduced to account for the interaction between glide and interface dislocations. The latter are accumulated during slip transmission. This unconventional hardening confines the movement of glide dislocations by promoting symmetry of slip activities. Consequently, it slows development of the rolling texture for Cu/Nb nanolayers, and partially preserves the initial interface orientation defined by the Kurdjumov–Sachs relationship.  相似文献   

17.
A theoretical model is proposed to describe nanocrack nucleation in polycrystalline silicon. In terms of this model, nanocrack nucleation is stimulated by grain-boundary sliding, which creates sources of local stresses in triple junctions of grain boundaries. The relaxation of these local stresses is the main driving force of nanocrack nucleation near triple junctions in polycrystalline silicon, in which grain-boundary sliding contributes substantially to plastic deformation under cyclic loading at room temperature. The model is used to calculate the critical external stress required for nanocrack nucleation in polycrystalline silicon.  相似文献   

18.
Diffusion-induced grain boundary migration (DIGM) is studied by the transmission electron microscopy method in polycrystalline two-layer Pd/Ag thin films with a grain size (100–2000 nm). In addition to the typical features of DIGM known for coarse-grained bulk objects and foils, new features are found which are caused by a quite dense network of triple junctions and by misfit dislocations: fast increase of grain boundary curvature and inclination; back motion of grain boundaries owing to recrystallization forces and termination of DIGM. Homogenization resulted from diffusion-induced migration of misfit dislocations is observed in addition to DIGM.  相似文献   

19.
Theoretical model is suggested that describes the effects of the cooperative nanograin boundary sliding and stress-driven nanograin boundary migration (CNGBSM) process on the lattice dislocation emission from an elliptically blunt nanocrack tip in deformed nanocrystalline materials. Within the model, CNGBSM deformation near the tip of growing nanocrack carries plastic flow, produces two dipoles of disclination defects and creates high local stresses in nanocrystalline materials. By using the complex variable method, the complex form expression of dislocation force is derived, and critical stress intensity factors for the first lattice dislocation emission are obtained under mode I and mode II loading conditions, respectively. The combined effects of the geometric features and strengths of CNGBSM deformation, nanocrack blunting and length on critical SIFs for dislocation emission depend upon nanograin size and material parameters in a typical situation where nanocrack blunting and growth processes are controlled by dislocation emission from nanocrack tips. It is theoretically shown that the cooperative CNGBSM deformation and nanocrack blunting have great influence on dislocation emission from blunt nanocrack tip.  相似文献   

20.
A molecular dynamics simulation of the plastic deformation and the onset of fracture of nanocrystalline metals is performed using the example of copper. Successive stages of the response of the microstructure of a metal to deformation are considered, namely, grain boundary sliding, the nucleation and gliding of dislocations, and the formation and growth of microdamage nuclei. The influence of the grain size of a nanocrystal on its plasticity and strength is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号