首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 135 毫秒
1.
2MeV直线感应加速器注入器系统由电子束产生器和脉冲功率系统组成。电子束产生器包括由感应腔组成的阴极电压叠加器、阳极电压叠加器和真空二极管及束输运系统。脉冲功率系统则包含初级功率源Marx、次级功率源Blumlein线和触发系统,其作用是为感应腔提供一个具有数十纳秒平顶宽度的高压脉冲,激发感应腔在感应腔间隙上获得一个加速电场。在2MeV注入器功率系统中,4个Blumlein线的充气开关是由发散装置的输出触发信号进行导通控制的。通过控制发散输出触发信号到达Blumlein线开关的时间,即可以实现Blumlein线开关在不同时间内触发导通,使Blumlein线依据所设定的时间顺序输出激励脉冲,从而在真空二极管上获得高压脉冲串。由于功率系统采用的是182C结构,即一根Blumlein线驱动两个感应腔,因此最多可以实现四脉冲串列。  相似文献   

2.
“神龙一号”直线感应加速器物理设计   总被引:28,自引:16,他引:12       下载免费PDF全文
 介绍了 “神龙一号”直线感应加速器物理设计的主要考虑。“神龙一号”加速器是一台电子直线感应加速器,由3.6MeV感应迭加型注入器、72个感应加速腔、脉冲功率系统、束流输运和聚焦系统、控制系统和真空、绝缘油、绝缘气体以及去离子水系统组成。能产生20MeV、束流大于2.5kA,脉冲宽度为60ns的强流脉冲电子束,X光焦斑均方根直径为1.5mm。  相似文献   

3.
“神龙一号”注入器研制   总被引:2,自引:0,他引:2  
“神龙一号”注入器是直线感应加速器的束流源,它采用了感应叠加的高压加载方式,包括脉冲功率系统、感应腔、阴阳极杆、绝缘支撑、二极管和束流传输系统等子系统. 在研制中采用了径向绝缘支撑、对中支撑调节系统、类Pierce阴极等先进技术,以及二极管线圈内置和外径为800mm的铁氧体大环等创新. 参数测试显示,3.5MeV注入器达到了世界先进水平.  相似文献   

4.
双脉冲电子直线感应加速器实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
 Mini-LIA为MHz重复频率双脉冲电子直线感应加速器,由双脉冲功率系统、热阴极电子枪注入器及金属玻璃磁芯感应加速腔等组成。在此平台的实验获得了数百ns间隔(即MHz重复频率)的双脉冲高压,每个脉冲幅值达到80 kV,脉冲半高全宽为80 ns;在感应腔加速间隙处测得双脉冲加速电场;在加速器出口处测量得到流强约1.1 A的双脉冲电子束流。实验结果表明:利用硅堆隔离汇流装置可实现MHz重复频率的双脉冲高压,金属玻璃磁芯感应加速腔和六硼化镧热阴极电子枪均适合MHz重复频率双脉冲工作方式。  相似文献   

5.
12MeV直线感应电子加速器   总被引:10,自引:6,他引:4       下载免费PDF全文
 12MeV直线感应电子加速器(LIA)是经12MeV LIA能量升级和系统改进而来,该机通过在10MeV LIA加速末端续接四个加速组元并调整脉冲功率系统, 将输出的电子束的能量升级至12MeV;同时,重新设计的输运磁场分布及聚焦系统更趋于合理,使经10MeV LIA升级和改进后的12MeV LIA,打靶电子束能量达到12MeV,束流约2.6kA,脉冲半高宽约89ns,焦斑约4 mm。  相似文献   

6.
2MeV注入器脉冲电子束时间分辨能谱诊断研究   总被引:4,自引:3,他引:1       下载免费PDF全文
 介绍了利用磁分析器和电子束产生的契伦科夫辐射光诊断直线感应加速器脉冲电子束时间分辨能谱的原理、方法及诊断系统,对中物院2MeV感应叠加型注入器的2kA强流脉冲电子束时间分辨能谱进行实验诊断,并与二极管电压进行对比分析。测得能量约2.2MeV,60ns内最大能量变化为4%。  相似文献   

7.
介绍了西北核技术研究院研制的4 MV脉冲X射线闪光照相装置("剑光二号")系统组成和实验结果。装置基于感应电压叠加器(IVA)驱动阳极杆箍缩二极管(RPD)技术,主要由前级脉冲功率源、感应电压叠加器和RPD等组成。前级脉冲功率源由两台3.2 MV低电感Marx发生器和四路同轴水介质线组成。每台Marx同时给两路脉冲形成线(特征阻抗6Ω、电气长度30 ns)充电,充电峰值时间约370 ns。每路水介质线采用两级脉冲压缩,为感应腔馈入约1 MV/160 kA/60 ns电脉冲。电触发SF6气体开关、自击穿水开关分别用作主同步开关和脉冲陡化开关。感应电压叠加器采用四级1.5 MV感应腔串联,每级感应腔采用单点馈入结构。次级采用真空绝缘传输线实现电压叠加和功率传输,特征阻抗由30Ω线性增大至120Ω。采用4 MV电压下综合性能较优的RPD来产生强脉冲X射线。装置目前达到技术指标:输出电压4.3 MV、脉冲前沿(10%~90%)21 ns、半高宽约70 ns、二极管电流85 kA,X射线半高宽约55 ns,整机延时(从Marx触发器输出到X射线产生)约749 ns,标准偏差约7 ns。当RPD阳极采用直径2 mm钨针时,正前方1 m处剂量约15.5 rad(LiF),正向焦斑约1.4 mm。  相似文献   

8.
天鹅绒阴极产生的强流双脉冲电子束特性   总被引:1,自引:0,他引:1       下载免费PDF全文
 通过一台2 MeV直线感应型强流电子注入器建立的双脉冲功率源系统,实验研究了天鹅绒阴极产生的相对论性猝发双脉冲强流电子束基本特性,给出了双脉冲电子束的积分发射度、亮度和双脉冲电子束时间分辨包络变化情况。研究结果表明:天鹅绒阴极产生的双脉冲的亮度达到108 A·(m·rad)-2;实验得到的两个脉冲电子束包络半径不完全一致,这是由于天鹅绒阴极在发射电子束过程中产生的阴极等离子体对真空二极管的影响程度不同所导致的。  相似文献   

9.
双脉冲电子束源实验研究   总被引:7,自引:4,他引:3       下载免费PDF全文
 利用现有2MeV直线感应注入器,通过改造,将其次级功率源和8个感应腔分成2组,使之交替工作,建立了一台双脉冲电子束源。二极管电压脉冲幅度达到1MeV,电子束脉冲持续时间为120ns,脉冲间隔可以根据需要在100~500ns间进行调节。实验结果表明:该双脉冲电子束源可以产生双脉冲电子束,其电压幅度差值小于2%,束流可达3kA,并且工作稳定,利用该装置可以进行多脉冲二极管物理和天鹅绒多脉冲发射特性实验研究。  相似文献   

10.
采用基于并联Blumlein脉冲形成线的MHz重复频率脉冲功率技术和基于激光触发气体开关的多级触发系统,设计了脉冲功率系统模块,该模块具备6路输出能力,每路均可以MHz重复频率猝发方式输出三脉冲,幅度可达300 kV。对模块中的Blumlein装置、脉冲汇流、隔离网络、触发系统等部件参数进行了设计。以多脉冲直线感应加速器感应腔作为负载,对该模块的性能进行了分析,结果表明:模块中每个脉冲的输出时间抖动小于2.3 ns(标准差),脉冲间最小时间间隔大于500 ns时可在负载上获得高品质波形。  相似文献   

11.
强流四脉冲电子束源实验研究   总被引:6,自引:3,他引:3       下载免费PDF全文
 为了进行强流多电子束源研究,对现有2MeV LIA 注入器进行了四脉冲改造,二极管脉冲电压约500kV。实验研究了天鹅绒阴极在四脉冲条件下的发射能力、传导电流负载效应以及阴极等离子体运动对阴极电子发射和束能量的影响。利用空间电荷限制流模型推算出阴极等离子体膨胀速率在1 ~4cm/μs之间。  相似文献   

12.
本文介绍了新近在中国工程物理研究院建成的一台直线感应加速器。这台加速器由六个250kV的加速组元构成。其中四个用于构成电子源,另外两个用作后加速。输出电子束能量为1.5MeV,束流2—3kA,束脉冲宽度90ns,束的非归—化均方根发射度70mrad-cm。  相似文献   

13.
利用一种结构紧凑的分段表面放电辐射源模块,详细研究了在不同电压、电容、气压实验条件下回路等效电阻、等效电感及放电能量沉积效率的变化规律,利用四分幅相机拍摄获得了不同实验条件下的放电等离子体通道图像,分析讨论了放电等离子体运动对放电能量沉积效率的影响,提出了提高能量放电沉积效率的有效途径。  相似文献   

14.
感应电压叠加器驱动阳极杆箍缩二极管型脉冲X射线源   总被引:5,自引:2,他引:3  
 介绍了自行研制的用于闪光照相且基于感应电压叠加器和阳极杆箍缩二极管的X射线源的组成、结构和主要参数。输出电压3 MV的Marx发生器给阻抗7.8 Ω水介质脉冲形成线充电,产生脉宽约70 ns,电压约1 MV的高功率脉冲,经过峰化开关和预脉冲开关后分成3路馈入三级感应电压叠加器感应腔进行电压叠加,感应电压叠加器次级采用真空绝缘传输线,阻抗从40 Ω变成60 Ω,驱动阳极杆箍缩二极管,二极管阴极为石墨,阳极为直径1.2 mm的钨杆,石墨阴极产生的电子束在电流自磁场作用下发生箍缩,轰击阳极,产生小焦斑脉冲X射线。该装置在Marx充电电压为±35 kV时,二极管电压约2.0 MV,二极管电流约为50 kA,半高宽约80 ns;X射线半高宽约为40 ns,剂量约为28 mGy,焦斑约为0.95 mm。利用该X射线源拍摄到了炸药爆炸产生的层裂碎片不同飞行时间的图像。  相似文献   

15.
耿力东  何泱  袁建强  王敏华  曹龙博  谢卫平 《强激光与粒子束》2018,30(11):115003-1-115003-6
闪光X射线照相是获得高凝聚态物质内部物理图像的重要手段,阳极杆箍缩二极管是X射线源的重要组成部分之一,其设计直接影响X射线源稳定性。由于受装置结构及真空等因素的影响,使得阴阳极几何中心同心存在一定的困难。因此,评估同心偏差对二极管物理特性的影响,对提高闪光X射线源稳定性具有重要的意义。针对阴阳极几何中心同心偏差问题开展实验研究,分别取三种同心偏差度(小于1%,15.02%和22.92%)状态。在1 MV电压下获得了不同同心偏差度下二极管电参数特性,并在此基础上结合理论模型分析了同心偏差度对二极管物理特性及电极等离子体扩散速度的影响。研究结果表明,随着同心偏差度增加,磁绝缘阶段阻抗下降率及等离子体扩散速度呈非线性增加,同时造成该阶段二极管阻抗与脉冲驱动源输出阻抗失配严重,降低了二极管与脉冲驱动源的能量耦合效率。  相似文献   

16.
在注入器段阳极杆内不同位置进行电子束包络的测量可以为多脉冲电子束在注入器段的传输磁场配置调试提供最直接的支撑,也是研究热阴极发射性能的重要手段,测量工作具有极为重要的意义。神龙二号采用热阴极作为多脉冲电子束源的发射体,对真空的要求极高,且加热及降温周期较长,不适合频繁地破坏真空进行测量位置的调整;针对这样的特点,设计了一套可伸缩式的测量装置,结合多幅分幅相机,在不破坏真空的情况下,可以完成多个位置的束包络的时间分辨测量,在提高测量效率的基础上进一步提高了注入器的调试效率。  相似文献   

17.
An X-band magnetically insulated transmission line oscillator (MILO) is designed and investigated numerically and experimentally for the first time. The X-band MILO is optimized in detail with KARAT code. In simulation, the X-band MILO, driven by a 720 kV, 53 kA electron beam, comes to a nonlinear steady state in 4.0 ns. High-power microwaves (HPM) of TEM mode is generated with an average power of 4.1 GW, a frequency of 9.3 GHz, and power conversion efficiency of 10.870 in durations of 0-40 ns. The device is fabricated according to the simulation results. In experiments, when the voltage is 400 kV and the current is 50 kA, the radiated microwave power reaches about 110 MW and the dominating frequency is 9.7GHz. Because the surfaces of the cathode end and the beam dump are destroyed, the diode voltage cannot increase continuously. However, when the diode voltage is 400 kV, the average power output is obtained to be 700 MW in simulation. The impedance of the device is clearly smaller than the simulation prediction. Moreover, the duration of the microwave pulse is obviously shorter than that of the current pulse. The experimental results are greatly different from the simulation predictions. The preliminary analyses show that the generations of the anode plasma, the cathode flare and the anode flare are the essential cause for the remarkable deviation of the experimental results from the simulation predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号