首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We discuss the interacting f(T) gravity with pressureless matter in an FRW spacetime. We construct an f(T) model by following the correspondence scheme incorporating a recently developed pilgrim dark energy model and taking the Hubble horizon as the IR cutoff. We use constructed model to discuss the evolution trajectories of the equation-of-state parameter, the ω T -ω′ T phase plane, and state-finder parameters in the evolving universe. It is found that the equation-of-state parameter gives a phantom era of the accelerated universe for some particular range of the pilgrim parameter. The ω T -ω′ T plane represents freezing regions only for an interacting framework, while the ΛCDM limit is attained in the state-finder plane. We also investigate the first and second laws of thermodynamics assuming equal temperatures at and inside the horizon in this scenario. Due to the violation of the first law of thermodynamics in f(T) gravity, we explore the behavior of the entropy production term. The validity of a generalized second law of thermodynamics depends on the present-day value of the Hubble parameter.  相似文献   

2.
In this paper, we introduce a non-minimally conformally coupled scalar field and dark matter in F(T) cosmology and study their dynamics. We investigate the stability and phase space behavior of the parameters of the scalar field by choosing an exponential potential and cosmologically viable form of F(T). We found that the dynamical system of equations admits two unstable critical points; thus no attractor solutions exist in this cosmology. Furthermore, taking into account the scalar field mimicking quintessence and phantom energy, we discuss the corresponding cosmic evolution for both small and large times. We investigate the cosmological implications of the model via the equation of state and deceleration parameters of our model and show that the late-time Universe will be dominated by phantom energy and, moreover, phantom crossing is possible. Our results do not lead to explicit predictions for inflation and the early Universe era.  相似文献   

3.
The magnetic after effect of pure polycristalline nickel and of a single crystal was measured between ?196 and +340 °C by a Förster second harmonic magnetometer. The viscosity constantS v is shown to be proportional toB(T)·Hc(T) with an increasing functionB(T) for specimens of different magnetic hardness. The temperature dependence Sv(T) atH c is rather complex in comparison to the simpleT- or √T-behaviour of former theoretical models. The latter is observed only forT??100 °C, whileS v is nearly independent ofT between ?100 and +300 °C, and drops abruptly to zero forT?300 °C.  相似文献   

4.
Strong lensing is an effective way to probing the properties of dark energy.In this paper,we use the strong lensing data to constrain the f(T)theory,which is a new modified gravity to explain the present accelerating cosmic expansion without the need of dark energy.In our discussion,the CMB and BAO data are also added to constrain model parameters tightly and three different f(T)models are studied.We find that strong lensing has an important role on constraining f(T)models,and once the CMB+BAO data is added,a tighter constraint is obtained.However,the consistency of our result with what is obtained from SNIa+CMB+BAO is actually model-dependent.  相似文献   

5.
Using general methods developed in a previous treatment we study correlations in inhomogeneous Ising models on a square lattice. The nearest neighbour couplings can vary both in strength and sign such that the coupling distribution is translationally invariant in diagonal direction. We calculate correlations parallel to the layering in the diagonally layered model with periodv=2, the so-called “general square lattice” model (GS). If the model has a finite critical temperature,T c>0, we have a spontaneous magnetization belowT c vanishing atT c with the Ising exponent β=1/8. AtT c correlations decay algebraically with critical exponnet η=1/4 and exponentially forT>T c. In the frustrated case we have oscillatory behaviour superposed on the exponential decay where the wavevector of the oscillations changes at some “disorder temperature”T D(>T c) from commensurate to temperature-dependent in commensurate periods. If the critical temperature vanishes,T c=0 we always have exponential decay at finite temperatures, while atT=T c=0 we encounter either long-range order or algebraic decay with critical index η=1/2, i.e.T=0 is thus a critical point.  相似文献   

6.
Generalized from the so-called teleparallel gravity, which is exactly equivalent to general relativity, f(T) gravity has been proposed as an alternative gravity model to account for the dark energy phenomena. In this letter we prove that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the f(T) gravity framework must be static. The conclusion is independent of the radial distribution and spherically symmetric motion of the source matter, that is, whether it is in motion or static. As a consequence, the Birkhoff’s theorem is valid in the general nonsingular f(T) theory at the un-perturbative level. We also discuss its application in the de Sitter spacetime evolution phase as preferred by present dark energy observations.  相似文献   

7.
The temperature dependence of the excess conductivity Δσ for Δσ = A(1 ? T/T*)exp(Δ*/T) (YBCO) epitaxial films is analyzed. The excess conductivity is determined from the difference between the normal resistance extrapolated to the low-temperature range and the measured resistance. It is demonstrated that the temperature dependence of the excess conductivity is adequately described by the relationship Δσ = A(1 ? T/T*)exp(Δ*/T). The pseudogap width and its temperature dependence are calculated under the assumption that the temperature behavior of the excess conductivity is associated with the formation of the pseudogap at temperatures well above the critical temperature T c of superconductivity. The results obtained are compared with the available experimental and theoretical data. The crossover to fluctuation conductivity near the critical temperature T c is discussed.  相似文献   

8.
The spatially homogeneous and totally anisotropic Bianchi Type-II space-time dark energy model with EoS parameter is considered in the presence of a perfect fluid source in the framework of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D, 84:024020, 2011). With the help of special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B, 74:182, 1983) a dark energy cosmological model is obtained in this theory. We consider f(R,T) model and investigate the modification R+f(T) in Bianchi type-II cosmology with an appropriate choice of a function f(T)=λT. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.  相似文献   

9.
It is still a challenging problem to the theoretical physicists to know the exact nature of the galactic dark matter which causes the galactic rotational velocity to be more or less a constant. We have proposed that the dark matter as an effect of f(T) gravity. Assuming the flat rotation curves as input we have shown that f(T) gravity can explain galactic dynamics. Here, we don’t have to introduce dark matter. Spacetime metric inspired by f(T) gravity describes the region up to which the tangential velocity of the test particle is constant. This inherent property appears to be enough to produce stable circular orbits as well as attractive gravity.  相似文献   

10.
In this work, we have considered dilaton dark energy model in Weyl-scaled induced gravitational theory in presence of barotropic fluid. It is to be noted that the dilaton field behaves as a quintessence. Here we have discussed the role of dilaton dark energy in modified gravity theories, namely f(R),f(T) and Hořava-Lifshitz gravities and analyzed the behavior of the dilaton field and the corresponding potential in respect to these modified gravity theories instead of Einstein’s gravity. In f(R) and f(T) gravities, we have considered some particular forms of f(R) and f(T) and we have shown that the potentials always increase with the dilaton fields. But in Hořava-Lifshitz gravity, it has been seen that the potential always decreases as dilation field increases.  相似文献   

11.
Ultrasonic data for the elastic moduli cij as functions of pressure and temperature are used to calculate critical temperatures Tcr(P = 0) and their initial pressure derivatives (?Tcr/?P)P=0 for the elastic stability of the alkali halides with the rocksalt and CsCl structures. The stability criteria used for the two structures are c′ = ½(c11 ? c12) = 0 and c44 = 0, respectively. The critical parameters Tcr(P = 0) and (?Tcr/?P)P=0 exhibit remarkable correlations with the melting temperatures Tm(P = 0) and their initial pressure derivatives (?Tm/?P)P=0, offering strong support to the existence of a connexion between shear instability and melting, as postulated by previous investigators. Critical parameters for the rocksalt oxides MgO, CaO, and SrO compare favourably with the critical and melting parameters for their fluoride analogues LiF, NaF and KF respectively.  相似文献   

12.
This work proposes a mechanism for the physical processes underlying the wide practical application of the unique properties of a substance in a critical state—critical fluid (CF)—in contemporary technologies. According to the fluctuation theory of phase transitions (FTPT), this mechanism may be due to the fluctuation and structural characteristics of a critical fluid, which determine its equilibrium and kinetic properties. Among such characteristics are the system correlation radius Rs, the number of order parameter fluctuations N f ~ R s -3 per mole of critical fluid, and the fluctuation component of the thermodynamic potential F*f = N f k T c/(P c V c) = C 0 R s -3 . These structural characteristics are studied with the use of experimental gravity effect data, such as the altitude and temperature dependencies of the scattered light intensity I(z, t) in a heterogeneous substance (n-pentane) near the critical vaporization temperature. Using these results and the literature data on the formation of Al2O3 nanoparticles with the use of SC-H2O, the propagation velocity of substance molecules v f ≈ 106 cm/s is estimated for the origination and decay of order parameter fluctuations. It has been concluded that just such high propagation velocities of substance molecules most likely cause the unique properties of a critical fluid during their practical application in a number of engineering processes.  相似文献   

13.
We study Glauber dynamics for the mean-field (Curie-Weiss) Potts model with q??3 states and show that it undergoes a critical slowdown at an inverse-temperature ?? s (q) strictly lower than the critical ?? c (q) for uniqueness of the thermodynamic limit. The dynamical critical ?? s (q) is the spinodal point marking the onset of metastability. We prove that when ??<?? s (q) the mixing time is asymptotically C(??,q)nlogn and the dynamics exhibits the cutoff phenomena, a sharp transition in mixing, with a window of order n. At ??=?? s (q) the dynamics no longer exhibits cutoff and its mixing obeys a power-law of order n 4/3. For ??>?? s (q) the mixing time is exponentially large in n. Furthermore, as ?????? s with n, the mixing time interpolates smoothly from subcritical to critical behavior, with the latter reached at a scaling window of O(n ?2/3) around ?? s . These results form the first complete analysis of mixing around the critical dynamical temperature??including the critical power law??for a model with a first order phase transition.  相似文献   

14.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

15.
In this paper, we investigate the late-time cosmic acceleration in mimetic f(RT) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from \(\mathcal {Q}(z)\) and the well-known particular model f(RT), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(RT) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(RT) gravity can be damped.  相似文献   

16.
We extend the holographic Ricci dark energy model to include some direct, non-gravitational interaction between dark energy and dark matter. We consider three phenomenological forms for the interaction term Q in the model, namely, Q is taken proportional to the Hubble expansion rate and the energy densities of dark sectors (taken to be ?? de, ?? m, and ?? de+?? m, respectively). We obtain a uniform analytical solution to the three interacting models. Furthermore, we constrain the models by using the latest observational data, including the 557 Union2 type Ia supernovae data, the cosmic microwave background anisotropy data from the 7-yr WMAP, and the baryon acoustic oscillation data from the SDSS. We show that in the interacting models of the holographic Ricci dark energy, a more reasonable value of ?? m0 will be obtained, and the observations favor a rather strong coupling between dark energy and dark matter.  相似文献   

17.
The a, b, c, and β crystallographic parameters of the (CH3)2NH2Al(SO4)2 · 6H2O crystal (DMAAS) have been measured by x-ray diffraction in the 90–300-K temperature range. The thermal expansion coefficients along the principal crystallographic axes αa, αb, and αc have been determined. It was shown that, as the temperature is increased, the parameter α decreases and b increases, whereas c decreases for T<T c (where T c is the transition temperature) and increases for T>T c, so that one observes a minimum in the c=f(T) curve in the region of the phase transition (PT) temperature T c ~ 152 K. The thermal expansion coefficients αa, αb, and αc vary in a complicated manner with increasing temperature, more specifically, αa and αc assume negative values at low temperatures, and the αa=f(T), αb=f(T), and αc=f(T) curves exhibit anomalies at the PT point. The crystal has been found to be substantially anisotropic in thermal expansion.  相似文献   

18.
f(RT) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(RT) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter–geometry coupling within the f(RT) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter–geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(RT) formalism in order to check its reliability in other fields, rather than cosmology.  相似文献   

19.
We present the coherent states of a scalar massive particle on 1+3-de Sitter space. These states are vectors in Hilbert space, and they are labeled by points in the associated phase space. To do this, we use the fact that the phase space of a scalar massive particle on 1+3-de Sitter space is a cotangent bundle “T ?(S 3)” which is isomorphic with the complex sphere “ $S_{\mathbb{C}}^{3}We present the performances of a 330?g zinc molybdate (ZnMoO4) crystal working as scintillating bolometer as a possible candidate for a next generation experiment to search for neutrinoless double beta decay of 100Mo. The energy resolution, evaluated at the 2615?keV ??-line of 208Tl, is 6.3?keV FWHM. The internal radioactive contaminations of the ZnMoO4 were evaluated as <6???Bq/kg (228Th) and 27±6???Bq/kg (226Ra). We also present the results of the ?? vs ??/?? discrimination, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone.  相似文献   

20.
It has been shown recently that the normal branch of a DGP braneworld scenario self-accelerates if the induced gravity on the brane is modified in the spirit of f(R) modified gravity. Within this viewpoint, we investigate cosmological viability of the Hu-Sawicki type modified induced gravity. Firstly, we present a dynamical system analysis of a general f(R)-DGP model. We show that in the phase space of the model, there exist three standard critical points; one of which is a de Sitter point corresponding to accelerating phase of the universe expansion. The stability of this point depends on the effective equation of state parameter of the curvature fluid. If we consider the curvature fluid to be a canonical scalar field in the equivalent scalar-tensor theory, the mentioned de Sitter phase is unstable, otherwise it is an attractor, stable phase. We show that the effective equation of state parameter of the model realizes an effective phantom-like behavior. A cosmographic analysis shows that this model, which admits a stable de Sitter phase in its expansion history, is a cosmologically viable scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号