首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes fluorescence decay and time-resolved anisotropy studies of green fluorescent protein (GFP) in various environments. The addition of glucose and fructose, NaCl, or polyethylene glycol changes the viscosity of the medium surrounding the GFP. Both the time-resolved anisotropy and the fluorescence decay of GFP are measured and it is shown that only the time-resolved anisotropy of GFP is affected by the viscosity, but not its fluorescence decay.  相似文献   

2.
A confocal microscope setup is developed for time-resolved fluorescence measurements. It is added to a traditional cuvette time-resolved setup, with a pumped Ti-Sa light source. The temporal resolution of 37 ps (FWHM) is not degraded, in comparison with the cuvette setup also described. These setups allow both decay lifetime and anisotropy relaxation time determination. Fluorescence correlation spectroscopy (FCS) is used to determine the observation point size. When associated with the calcium probe calcium green, calcium concentration in single cells can be determined in 10 ms by simultaneous acquisition of early and late fluorescence photons.  相似文献   

3.
We examined the steady-state and time-resolved fluorescence spectral properties of the DNA stain Hoechst 33342 for one-photon (OPE) and two-photon (TPE) excitation. Hoechst 33342 was found to display a large cross section for two-photon excitation within the fundamental wavelength range of pyridine 2 and rhodamine 6G dye lasers, 690 to 770 and 560 to 630 nm, respectively. The time-resolved measurements show that intensity decays are similar for OPE- and TPE. The anisotropy decay measurements of Hoechst 33342 in ethanol revealed the same correlation times for TPE as observed for OPE. However, the zero-time anisotropies recovered from anisotropy decay measurements are 1.4-fold higher for TPE than for OPE. The anisotropy spectra of Hoechst 33342 were examined in glycerol at ?20°C, revealing limiting values close to the theoretical limits for OPE (0.4) and TPE (0.57). The steady-state anisotropy for OPE decreases in the shorter-wavelength region (R6G dye laser, 280–315 nm), but the two-photon anisotropy for 560 to 630-nm excitation remains as high as in the long-wavelength region (690–770 nm). This result suggests that one-photon absorption is due to two electronic, but only one transition contributes to the two-photon absorption over the wavelength range from 580 to 770 nm. Our demonstration of these favorable two-photon properties for Hoechst 33342, and the high photostability of the dye reported by other laboratories, suggests that this dye will be valuable for time-resolved studies of DNA with TPE and for two-photon fluorescence microscopy.  相似文献   

4.
After purification to homogeneity by Bio-Rex 70 ion exchange chromatography, micromolar solutions ofNaja nigricollis cardiotoxin were found to contain significant amounts of aggregates, as detected by time-resolved polarized fluorescence of its single tryptophan residue. The level of cardiotoxin aggregation depends strongly and reversibly on the protein concentration and pH. However, supplementary reverse-phase HPLC completely suppresses this aggregation, resulting in all cases in fluorescence anisotropy decays characteristic of the pure cardiotoxin monomer. The self-association properties of cardiotoxin, in the presence of a possible cofactor eliminated by the HPLC step, may be functionally relevant, and would deserve further investigation. The physical heterogeneity of the cardiotoxin samples required an appropriate model for the analysis of fluorescence depolarization, which was iteratively improved by comparison with experimental results. In this way, an approximate molar fraction of 10–15% aggregated cardiotoxin at a 90M total protein concentration, pH 7, was determined. The fluorescence of the partly aggregated samples is significantly perturbed as compared to the HPLC-treated monomer, indicating that the cardiotoxin aggregate must have an increased average fluorescence lifetime and a strongly decreased initial anisotropy. The decrease in initial anisotropy suggests either an increased mobility of the tryptophan residue upon aggregation or fast energy transfers between residues of different cardiotoxin molecules brought within a short distance in the aggregate. This study illustrates the high sensitivity of the time-resolved fluorescence technique, through both total fluorescence and anisotropy parameters, to low levels of physical or chemical heterogeneity in a protein sample.  相似文献   

5.
The effect of the cholesterol (ch) on liposomes composed of the cationic lipid dioctadecyldimethylammonium bromide (DODAB) was assessed by studying both the steady-state and time-resolved fluorescence anisotropy of the dye Nile Red. The information obtained combined with analysis of the steady-state emission and fluorescence lifetime of Nile Red (NR) for different cholesterol concentrations (5–50%) elucidated the presence of “condensed complexes” and cholesterol-rich domains in these mixed systems. The steady-state fluorescence spectra were decomposed into the sum of two lognormal emissions, emanating from two different states, and the effect of temperature on the anisotropy decay of Nile Red for different cholesterol concentrations was observed. At room temperature, the time-resolved anisotropy decays are indicative of NR being relatively immobile (manifest by a high r value). At higher temperature, rotational times ca. 1 ns were obtained throughout and a trend in increasing hindrance was seen with increase of Ch content.  相似文献   

6.
An algorithm is presented that quantitatively accounts for donor–donor energy migration (DDEM) among fluorophore-labeled proteins forming regular aggregates. The DDEM algorithm is based on Monte Carlo and Brownian dynamics simulations and applies to calculation of fluorescence depolarisation data, such as the fluorescence anisotropy. Thereby local orientations, as well as reorienting motions of the fluorescent group are considered in the absence and presence of DDEM and among, in principle, infinitely many proteins as they form regular aggregates. Here we apply the algorithm for calculating and illustrating the DDEM and the time-resolved fluorescence anisotropy under static as well as dynamic conditions within helical, linear and circular aggregate structures. A principal approach of the DDEM algorithm for analysing protein aggregates is also outlined.  相似文献   

7.
New Perspectives of Fluorescence Correlation Spectroscopy   总被引:1,自引:0,他引:1  
The principle of fluorescence correlation spectroscopy is outlined. The technique has been applied to a mutant of the well-known green fluorescent protein. A comparative study has been made with time-resolved fluorescence anisotropy. The latter experiment shows that the fluorophore is rigidly bound inside the protein matrix follows the rotation of the whole protein and does not show any fast restricted motion. It is evident from fluorescence correlation spectroscopy that some excited-state reaction plays a role, since the autocorrelation traces show a significant effect on the incident laser power. Other potential applications of fluorescence correlation spectroscopy are presented as taken from very recent publications.  相似文献   

8.
Steady-state and time-resolved fluorescence polarization studies have been carried out on acenaphthene (ACE) in low-temperature glass solutions and at room temperature. In the low-temperature glass the fluorescence polarization values vary considerably with both emission and excitation wavelength. There is a time dependence (on the nanosecond time scale) of the fluorescence anisotropy, r(t), at 77 K, which has a strong dependence upon the excitation and emission wavelengths. Under these conditions, the time-dependent decay of the anisotropy is not attributable to chromophoric motion. The observations are consistent with emission from two closely lying and interconverting excited states. Rate constants for the photophysical processes involved have been determined by fitting the data using a model proposed by Fleming et. al. The results are discussed with particular reference to the care required in using dynamic fluorescence polarization measurements to determine energy transfer rates in systems containing this chromophore.  相似文献   

9.
The photophysical behavior of several probes incorporated in sol-gel–derived matrices (both monoliths and thin films) has been studied using steady-state and time-resolved fluorescence, along with fluorescence anisotropy to study the matrix structure and to elucidate probe-matrix interactions. The probes studied include laser and solvatochromic dyes along with porphyrins and phthalocyanines. It was found that spectral shifts, time-resolved decays, and quantum yields depend on the type of matrix and its preparation conditions combined with the drying time and the nature of retained solvent, which can be added to act as an anticracking agent. The differences between the results in the TiO2 matrix, where electron transfer is most probably present, and SiO2 are shown.  相似文献   

10.
Both a mode-locked argon-ion laser and synchrotron radiation were used as excitation sources to obtain time-resolved polarized fluorescence of the two FAD cofactors in electron transferring flavoprotein fromMegasphaera elsdenii. Red-edge excited and blue-edge detected fluorescence anisotropy decay curves did not contain a fast relaxation process which was observed upon mainband excitation and detection. This relaxation was assigned to homo-energy transfer between the two FAD cofactors. Failure of energy transfer as observed with edge spectroscopy on this protein excludes restricted reorientational motion of the flavins as a possible mechanism of depolarization. From the global analysis of the fluorescence anisotropy decay surface obtained at multiple excitation and detection wavelengths, the distance between and the relative orientation of the flavins could be estimated. The methodology described has general applicability in other multichromophoric biopolymers and has the potential to acquire accurate geometrical parameters in these systems.  相似文献   

11.
The steady-state and time-resolved fluorescece spectroscopy is one of the most powerful method to detect and analyze subtle conformation change and interaction between peptide elements in protein. Phytocystatin Scb isolated from sunflower seeds includes a single Trp residue at position 85. In an attempt to investigate the interaction of the N-terminal region of Scb with the first and second hairpin loops by fluorescence spectroscopy of Trp residue, two Scb mutants in which single Trp locates at position 52 and 58, respectively, and their N-terminal removed mutants were generated. The N-terminal truncation changed the fluorescence decay kinetics of Trp52 from the triple exponential to double. Furthermore, the time-resolved fluorescence anisotropy residue indicated that the segmental motion of Trp52 was significantly enhanced by its N-terminal truncation. In contrast, Trp58 and Trp85 had little influence. The N-terminal successive truncations of Scb and its mutants resulted in the weaken inhibitors to papain. These results suggested that the N-terminal region of Scb interacts with the peptide segment preceding the first hairpin loop, thereby stabilizing the conformation of the hairpin loop structure.  相似文献   

12.
飞秒荧光亏蚀光谱技术研究液相体系取向弛豫   总被引:1,自引:0,他引:1  
溶液中分子的快速弛豫过程直接反映了溶液中溶质和周围溶剂分子间的相互作用[1- 3 ] .在液相体系中分子取向通常是随机分布的 .当溶质分子被线偏振光激发至激发态时 ,其分子取向将由原来各向同性的球形分布瞬间变成各向异性的椭球分布 .由于溶质分子周围大量溶剂分子的存在 ,通过二者之间相互作用 ,激发态溶质分子在一定方向上的取向优势将很快弛豫掉 .这种溶液中的取向弛豫过程通常是几个到几百皮秒[1- 3 ] .飞秒分辨荧光亏蚀光谱原理和实验方法见文献[4 - 7] .当溶液中的溶质分子被线偏振飞秒激光脉冲激发至电子激发态时 ,经过一定的延迟…  相似文献   

13.
The interaction between a free-base, anionic water-soluble porphyrin, TSPP, and the drug carrier protein, bovine serum albumin (BSA) has been studied by time-resolved fluorescence anisotropy (TRFA) and fluorescence correlation spectroscopy (FCS) at two different pH-values. Both rotational correlation times and translational diffusion times of the fluorescent species indicate that TSPP binding to albumin induces very little conformational changes in the protein under physiological conditions. By contrast, at low pH, a bi-exponential decay is obtained where a short rotational correlation time (phi (int) = 1.2 ns) is obtained, which is likely associated to wobbling movement of the porphyrin in the protein binding site. These physical changes are corroborated by circular dichroism (CD) data which show a 37% loss in the protein helicity upon acidification of the medium. In the presence of excess porphyrin formation of porphyrin J-aggregates is induced, which can be detected by time-resolved fluorescence with short characteristic times. This is also reflected in FCS data by an increase in molecular brightness together with a decrease in the number of fluorescent molecules passing through the detection volume of the sample.  相似文献   

14.
Nile red bound to human serum albumin (HSA) shows an order of magnitude increase in the probe's fluorescence intensity. Here, we report on the fluorescence characteristics of the probe-protein complex in Trizma buffer (pH 7.1), urea, guanidine hydrochloride, and AOT/isooctane/buffer reverse micelles using both steady—state and time-resolved fluorescence techniques. With a view to illustrating the use of extrinsic probe fluorescence spectroscopy in protein research, we demonstrate that protein unfolding can be observed through measurements of the probe's time-resolved anisotropy and steady-state fluorescence spectrum. Moreover, this shows that thermal unfolding is fundamentally different from using denaturant, with respect to changes in both the nanosecond diffusional rotation of the probe at intermediate stages and in the denatured protein's structure. Also, the large Stokes shift of Nile red allows the changes in the environment of the probe-protein complex in reverse micelles of varying waterpool size to be easily identified in the steady-state fluorescence. This was not seen in earlier work exploiting the intrinsic tryptophan fluorescence of HSA and further demonstrates the complementary information that extrinsic fluorescence probe studies can offer protein science. We discuss the complex acrylamide quenching characteristics of Nile red bound to HSA in terms of the possibility of at least two binding sites for the probe and the effect of acrylamide on the probe-protein structure at very high quencher concentrations.  相似文献   

15.
Picosecond time-resolved fluorescence spectroscopy has enabled us to use a near-infrared fluorescent dye to probe the sol-gel transition in SiO2 hydrogels, polymerized from sulfuric acid and sodium silicate solution, for the first time. We compare the microviscosity surrounding the probe during the sol-to-gel transition as predicted by two alternative models which both describe the decay of fluorescence anisotropy well. The results for one rotational time and a residual anisotropy imply that macrogelation of the sol leads to relatively small changes in the mobility of the fluorophore caused by small changes in microviscosity, but after much longer times, e.g., 1500 min, the mobility of the fluorophore decreases, reflecting a rapid increase in microviscosity of over several orders in magnitude. In sharp contrast, analysis of the anisotropy in terms of two rotational times predicts little change in microviscosity over the whole polymerization process.  相似文献   

16.
We present a comparative fluorescence spectroscopic investigation of diacyl and diether phosphatidylcholine vesicles using different probes with well-defined localization within either the hydrophilic headgroup region or the hydrophobic part of the bilayer. Time-resolved emission spectra have been used to characterize the solvent relaxation behavior in both symmetric and asymmetric diether and diacyl phosphatidylcholines. It is shown that time-resolved emission spectra of Prodan (6-propionyl-2-(dimethylamino)-naphthalene) and its long-alkyl chain derivative Patman (6-palmitoyl-2-[[trimethylammoniumethyl]methylamino]-naphthalene chloride) are a sensitive tool for the detection of differences in the micropolarities and viscosities at the hydrophobic/hydrophilic membrane interface of diether and diacyl lipids, respectively. Moreover, a new approach for the detection of interdigitated bilayers is discussed. It relies on the construction of anisotropy and decay time profiles for the set of n-anthroyloxy fatty acids and is compared with an older fluorescence assay based on intensity measurements only. The shape of plots of the fluorescence steady-state anisotropy versus the position of the chromophore (anthracene-9-carboxylic acid) combined with fluorescence lifetime measurements can be used to differentiate among non-fully, and mixed interdigitated gel phase structures and to predict structures for new lipid species.  相似文献   

17.
Suspensions of oligophenylenevinylene (nPV) nanoparticles withn = 2 vinylene units are doped with nPVs of longer chainlengths,n = 3–5. Absorption and fluorescence spectroscopy and steady-state and time-resolved fluorescence anisotropy measurements are used to determine the photo-physical properties of the suspensions. Undoped nanoparticles form highly oriented H-aggregates with low fluorescence quantum yields (ΦF ≈ 0.1). Introduction of bulky substituents into the particle constituting molecules perturbs the intermolecular orientation. Upon doping, efficient energy transfer to the dopants is found, changing the color and leading to enhancement of the fluorescence quantum yields up to ΦF = 0.6. The intermolecular orientation is not changed upon doping.  相似文献   

18.
We examined the steady-state and time-resolved emission of liver alcohol dehydrogenase resulting from one-photon and two-photon excitation. Previous studies with one-photon excitation revealed that the two nonidentical tryptophan residues display different emission spectra and decay times. The use of two-photon excitation resulted in similar emission spectra, multiexponential intensity decays, time-resolved emission spectra, and anisotropy decays as was observed for one-photon excitation. These results suggest that both nonidentical tryptophan residues are excited to a similar extent for one- and two-photon excitation. However, the limiting anisotropy (r 0) with two-photon excitation from 585 to 610 nm is below 0.1 and appears distinct from that observed previously forN-acetyl-l-tryptophanamide.Abbreviations LADH liver alcohol dehydrogenase - -NAD+ -nicotinamide adenine dinucleotide - OPE one-photon excitation - OPIF one-photon induced fluorescence - TPE two-photon excitation - TCSPC time-correlated single photon counting - TPIF two-photon induced fluorescence  相似文献   

19.
Data acquisition and analysis of the time-resolved fluorescence anisotropy is typically a time consuming process preventing usage of this experimental method for monitoring of time-dependent phenomena. We describe a method for pseudo real-time monitoring of the limiting fluorescence anisotropy r(infinity) allowing to track changes of the membrane order occurring on the time scale of minutes. Principle and performance of the method is demonstrated in the time domain with the time-correlated single photon counting detection. DMPC liposomes stained with 1,6-diphenyl-1,3,5-hexatriene (DPH) have been used to test influence of the diffusion membrane potential on the membrane order during the temperature-induced phase transition in DMPC membranes. It has been found that the transmembrane field of the order of -70 mV increases the phase transition temperature by about 1.5 degrees C-2 degrees C. It is proposed that the full advantage of the method can be utilized with a gated detection, which besides a faster data acquisition brings additional advantage of excitation light suppression. The method can be also used for imaging.  相似文献   

20.
The association of a non-ionic surfactant of polyoxyethylene-p-(1,1,3,3-tetramethylbutyl)phenyl ether (Triton X) series with 2-AS in aqueous solution has been studied by means of steady-state, time-resolved fluorescence and fluorescence anisotropy techniques. The effect of the hydrophobic chain length on the structural dynamism of the fluorophore has been reported. Experimental results demonstrate that the equilibrium of this dynamism is sensitive to the environment. The association constant of the probe molecule with the non-ionic micelles of Triton X (TX), location of the probe in the micellar environment, have been determined from the change in emission characteristics of the probe as a function of surfactant concentration. The rate constant of quenching and mode of quenching of probe in micellar media have been ascertained. Quantitative estimates of the micropolarity at the binding sites of the probe molecule have been determined. Some of the environment-dependent relevant fluorescence parameters, fluorescence anisotropy (r), have been monitored for exploring the imposed motional restriction of the microenvironment around the probe. An attempt has been made to correlate the steady-state results with time resolved study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号