首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the structural and optical properties of copper aluminium oxide (CuAlO2) thin films, which were prepared on c-plane sapphire substrates by the radio frequency magnetron sputtering method. X-ray photoelectron spectroscopy (XPS) along with X-ray diffraction (XRD) analysis confirms that the films consist of delafossite CuAlO2 phase only. The optical absorption studies show the indirect and direct bandgap is 1.8 eV and 3.45 eV, respectively. Room temperature photoluminescence (PL) measurements show three emission peaks at 360 nm (3.45 eV), 470 nm (2.63 eV) and 590 nm (2.1 eV). The first one is near band edge emission while the other two are originated from defects.  相似文献   

2.
Unintentionally doped and zinc-doped indium nitride (U-InN and InN:Zn) films were deposited on (0 0 0 1) sapphire substrates by radio-frequency reactive magnetron sputtering, and all samples were then treated by annealing to form In2O3 films. U-InN and InN:Zn films have similar photon absorption characteristics. The as-deposited U-InN and InN:Zn film show the absorption edge, ∼1.8-1.9 eV. After the annealing process at 500 °C for 20 min, the absorption coefficient at the visible range apparently decreases, and the absorption edge is about 3.5 eV. Two emission peaks at 3.342 eV (371 nm) and 3.238 eV (383 nm) in the 20 K photoluminescence (PL) spectrum of In2O3:Zn films were identified as the free-exciton (FE) or the near band-to-band (B-B) and conduction-band-to-acceptor (C-A) recombination, respectively.  相似文献   

3.
Silver thiogallate (AgGaS2) is a ternary semiconductor which crystallizes in the chalcopyrite structure. Silver thiogallate has been widely used in different applications for its interesting physical properties: wide transparency range (from 0.5 to 12 μm), high non-linear optical coefficient combined with good mechanical properties.The direct band gap in this compound is of about 2.7 eV and emissions due to free and bound excitons had been observed. Photoluminescence spectrum is also characterized by a wide emission band centred at 496 nm (2.50 eV) due to donor-acceptor pairs recombination (DAP).We performed photoluminescence (PL) measurements exciting with the third harmonic (3.5 eV) of a Nd:YAG laser from room temperature down to 10 K at different excitation power.In this work, we report the dependence of the photoluminescence features of AgGaS2 on the excitation power at various temperatures: ionization energy of defects are estimated on the basis DAP theoretical model and of thermal quenching of the photoluminescence; evidences of non-radiative processes competitive to DAP is also presented.  相似文献   

4.
The intrinsic formation of polyatomic defects in Sc2(WO4)3-type structures is studied by Mott Littleton calculations and Molecular Dynamics simulations. Defects involving the WO42− tetrahedron are found to be energetically favorable when compared to isolated W and O defects. WO42− Frenkel and (2Sc3+, 3WO42−) Schottky defects exhibit formation energies of 1.23 eV and 1.97 eV, respectively and therefore may occur as intrinsic defects in Sc2(WO4)3 at elevated temperatures. WO42− vacancy and interstitial migration processes have been simulated by classical Molecular Dynamics simulations. The interstitial defect exhibits a nearly 10 times higher mobility (with a migration energy of 0.68 eV), than the vacancy mechanism (with a slightly higher migration energy of 0.74 eV) and thus should dominate the overall ionic conduction. Still both models reproduce the experimental activation energy (0.67 eV) nearly within experimental uncertainty.  相似文献   

5.
The electronic structures and absorption spectra for both the perfect PbWO4 (PWO) crystal and the three types of PWO crystals, containing VPb2−, VO2+ and a pair of VPb2−-VO2+, respectively, have been calculated using CASTEP codes with the lattice structure optimized. The calculated absorption spectra indicate that the perfect PWO crystal does not occur absorption band in the visible and near-ultraviolet region. The absorption spectra of the PWO crystal containing VPb2− exhibit seven peaks located at 1.72 eV (720 nm), 2.16 eV (570 nm), 2.81 eV (440 nm), 3.01 eV (410 nm), 3.36 eV (365 nm), 3.70 eV (335 nm) and 4.0 eV (310 nm), respectively. The absorption spectra of the PWO crystal containing VO2+ occur two peaks located at 370 nm and 420 nm. The PWO crystal containing a pair of VPb2−-VO2+ does not occur absorption band in the visible and near-ultraviolet region. This leads to the conclusions that the 370 and 420 nm absorption bands are related to the existence of both VPb2− and VO2+ in the PWO crystal and the other absorption bands are related to the existence of the VPb2− in the PWO crystal. The existence of the pair of VPb2−-VO2+ has no visible effects on the optical properties. The calculated polarized optical properties are well consistent with the experimental results.  相似文献   

6.
Synthesis and luminescence properties of Li3NbO4 oxides by the sol-gel process were investigated. The products were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy and absorption spectra. The PL spectra excited at 247 nm have a broad and strong blue emission band maximum at 376 nm, corresponding to the self-activated luminescence of the niobate octahedra group [NbO6]7−. The optical absorption spectra of the samples sintered at temperatures of 600 and 700 °C exhibited the band-gap energies of 4.0 and 4.08 eV.  相似文献   

7.
The thermal annealing behavior of the Y3Al5O12, CaF2 and LiF single crystals bombarded at Algiers with reactor neutrons has been monitored by optical absorption spectroscopy. The irradiation was performed at about 315 K. On heating samples after irradiation, the optical absorption bands decrease and disappear completely at 873 and 523 K in the case of Y3Al5O12 and CaF2, respectively. Activation energies of 1.2±0.02 and 0.9±0.2 eV are estimated for Y3Al5O12 and CaF2, respectively. On the other hand, the LiF crystal shows a complex annealing behavior. Here, the optical absorption spectrum presents different shapes after each annealing temperature. Four steps are distinguished and discussed on heating samples from 300 to 673 K. Above 673 K, the absorption drops by about 50%; it completely disappears at 773 K.  相似文献   

8.
A high-quality ZnNb2O6 single-crystal grown by optical floating zone method has been used as a research prototype to analyze the optoelectronic parameters by measuring the absorption coefficient and transmittance spectra along the b-axis from 200 nm to 1000 nm at room temperature. The optical interband transitions of ZnNb2O6 have been determined as a direct transition with a band gap of 3.84 eV. The refractive index, extinction coefficient, and real and imaginary parts of the complex dielectric constants as functions of the wavelength for ZnNb2O6 crystal are obtained from the measured absorption coefficients and transmittance spectra. In the Urbach tail of 3.16–3.60 eV, the validity of the Cauchy–Sellmeier equation has also been evaluated. Using the single effective oscillator model, the oscillator energy Eo is found to be 4.77 eV. The dispersion energy Ed is 26.88 eV and ZnNb2O6 crystal takes an ionic value.  相似文献   

9.
Single-crystalline Bi2S3 nanowires, with diameters in the range of 80-200 nm and lengths up to tens of micrometers, have been successfully synthesized through surfactant micelle-template inducing reaction at ambient-pressure and low-temperature. The synthetic route is simple, effective and can provide great opportunities for both fundamental and technological applications. The optical properties of the Bi2S3 nanowires with different diameters were firstly examined by means of photoluminescence spectroscopy at room temperature. The representative photoluminescence spectrum exhibits a great blue-shift from the band gap of 1.30 eV of bulk Bi2S3 to high energy of 1.44 eV, which indicated that these nanostructures showed quantum confinement effects.  相似文献   

10.
Optoelectronics research requires cheap materials with a broad spectrum of optical, electronic, and structural properties. The class of Heusler compounds and ternary structures provide many possibilities for finding alternative group IV and III–V semiconductor compounds. This study introduces wider band gap materials for use in solar cells as an alternative to cadmium sulfide buffer layers. The buffer layer is inserted between the absorber layer (p-type) and the transparent window layer (n-type) to enhance the maximum amount of light transmission. Reasonable calculations are reported for the band gaps of copper-containing materials: LiCuS, BaCu2S2, and Li2CuSb. Previous optical analysis measurements of these films determined that the band gaps were 1.8 and 1.9 eV for BaCu2S2 and LiCuS, respectively. In general, semiconductor compounds have been studied theoretically, but there are major differences between the experimental and theoretically calculated band gaps. A suitable calculation method for semiconductor compounds is described in this study. For the first time, calculations based on the Engel and Vosko method are introduced for these semiconductor compounds. This method yields band gaps that are comparable to the experimental values, which facilitate the development of microscopic analyses of these compounds. Direct band gaps of 1.15 and 1.7 eV were obtained for BaCu2S2 and LiCuS, respectively, whereas the indirect band gap was 0.7 eV for Li2CuSb.  相似文献   

11.
The optical absorption edge of brookite TiO2 was measured at room temperature, using natural crystals. The measurements extend up to 3.54 eV in photon energy and 2000 cm−1 in absorption coefficient. The observed absorption edge is broad and extends throughout the visible, quite different from the steep edges of rutile and anatase. No evidence of a direct gap is seen in the range measured. The spectral dependence of the absorption strongly suggests that the brookite form of TiO2 is an indirect-gap semiconductor with a bandgap of about 1.9 eV.  相似文献   

12.
The optical properties of polycrystalline lead iodide thin film grown on Corning glass substrate have been investigated by spectroscopic ellipsometry. A structural model is proposed to account for the optical constants of the film and its thickness. The optical properties of the PbI2 layer were modeled using a modified Cauchy dispersion formula. The optical band gap Eg has been calculated based on the absorption coefficient (α) data above the band edge and from the incident photon energy at the maximum index of refraction. The band gap was also measured directly from the plot of the first derivative of the experimental transmission data with respect to the light wavelength around the transition band edge. The band gap was found to be in the range of 2.385±0.010 eV which agrees with the reported experimental values. Urbach's energy tail was observed in the absorption trend below the band edge and was found to be related to Urbach's energy of 0.08 eV.  相似文献   

13.
ZnO-Al2O3 nanocomposite thin films were prepared by sol-gel technique. The room temperature synthesis was mainly based on the successful peptization of boehmite (AlO(OH)) and Al(OH)3 compounds, so as to use it as matrix to confine ZnO nanoparticles. The relative molar concentrations of xZnO to (1 − x) Al2O3 were varied as x = 0.1, 0.2 and 0.5. The optical absorption spectra of the thin films showed intense UV absorption peaks with long tails of variable absorption in the visible region of the spectra. The ZnO-Al2O3 nanocomposites thin films were doped with MgO by varying its molar concentrations as y = 0.05, 0.75, 0.1, 0.125, 0.15 and 0.2 with respect to the ZnO present in the composite. The MgO doped thin films showed suppression of the intense absorption peaks that was previously attained for undoped samples. The disappearance of the absorption peaks was analyzed in terms of the crystalline features and lattice defects in the nanocomposite system. The bulk absorption edge, which is reportedly found at 3.37 eV, was shifted to 5.44 eV (for y = 0.05), 5.63 eV (for y = 0.075) and maximum to 5.77 eV (for y = 0.1). In contrast, beyond the concentration, y = 0.1 the absorption edges were moved to 5.67 eV (for y = 0.125), 5.61 eV (for y = 0.15) and to 5.49 eV (for y = 0.2). This trend was explained in terms of the Burstein-Moss shift of the absorption edges.  相似文献   

14.
15.
The Silver Gallium Sulfide (AgGaS2) ternary compound is a wide bandgap semiconductor (about 2.7 eV) whose photoluminescence properties are characterized by excitons and donor-acceptor pairs recombinations. We have performed photoluminescence (PL) measurement exciting with the third harmonic (3.5 eV) of a Nd:YAG laser from room temperature down to 10 K at different excitation power. In this work we report the dependence of the ‘green band’ on the excitation power at various temperatures.  相似文献   

16.
Detailed ab initio calculations of the structural, electronic, optical and elastic properties of two crystals - magnesite (MgCO3) and calcite (CaCO3) - are reported in the present paper. Both compounds are important natural minerals, playing an important role in the carbon dioxide cycling. The optimized crystal structures, band gaps, density of states diagrams, elastic constants, optical absorption spectra and refractive indexes dependence on the wavelength all have been calculated and compared, when available, with literature data. Both crystals are indirect band compounds, with calculated band gaps of 5.08 eV for MgCO3 and 5.023 eV for CaCO3. Both values are underestimated by approximately 1.0 eV with respect to the experimental data. Although both crystals have the same structure, substitution of Mg by Ca ions leads to certain differences, which manifest themselves in noticeable change in the electronic bands profiles and widths, shape of the calculated absorption spectra, and values of the elastic constants. Response of both crystals to the applied hydrostatic pressure was analyzed in the pressure range of phase stability, variations of the lattice parameters and characteristic interionic distances were considered. The obtained dependencies of lattice constants and calculated band gap on pressure can be used for prediction of properties of these two hosts at elevated pressures that occur in the Earth's mantle.  相似文献   

17.
The ternary semiconducting compound Cu2GeSe3 has been investigated for optical properties with photoacoustic spectroscopy. Optical absorption spectra of Cu2GeSe3 is obtained in the range of 0.76-0.81 eV photon-energy at temperatures between 80 and 300 K. The thermal variation of band gap energy has been examined from the optical absorption spectra at different temperatures. The temperature induced band gap shrinkage has been explained on the basis of electron-phonon interaction. Varshni's empirical relation in conjunction with Vina and Passler model is taken into consideration for data fitting. The Debye temperature was calculated approximately as 240 K. The acoustic phonons with a characteristic temperature as 160 K corresponding to effective mean frequency have been attributed to the thermal variation of the energy gap.  相似文献   

18.
In this work we report the optical, morphological and structural characterization and diode application of Cr2O3 nanofilms grown on p-Si substrates by spin coating and annealing process. X-ray diffraction (XRD), non-contact mode atomic force microscopy (NC-AFM), ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy were used for characterization of nanofilms. For Cr2O3 nanofilms, the average particle size determined from XRD and NC-AFM measurements was approximately 70 nm. Structure analyses of nanofilms demonstrate that the single phase Cr2O3 on silicon substrate is of high a crystalline structure with a dominant in hexagonal (1 1 0) orientation. The morphologic analysis of the films indicates that the films formed from hexagonal nanoparticles are with low roughness and uniform. UV-vis absorption measurements indicate that the band gap of the Cr2O3 film is 3.08 eV. The PL measurement shows that the Cr2O3 nanofilm has a strong and narrow ultraviolet emission, which facilitates potential applications in future photoelectric nanodevices. Au/Cr2O3/p-Si metal/interlayer/semiconductor (MIS) diodes were fabricated for investigation of the electronic properties such as current-voltage and capacitance-voltage. Ideality factor and barrier height for Au//Cr2O3/p-Si diode were calculated as 2.15 eV and 0.74 eV, respectively. Also, interfacial state properties of the MIS diode were determined. The interface-state density of the MIS diode was found to vary from 2.90 × 1013 eV−1 cm−2 to 8.45 × 1012 eV−1 cm−2.  相似文献   

19.
In this study, silicon nanocrystal-rich Al2O3 film has been prepared by co-sputtering a silicon and alumina composite target and subsequent annealing in N2 atmosphere. The microstructure of the film has been characterized by infrared (IR) absorption, Raman spectra and UV-absorption spectra. Typical nanocrystal and interface defects related photoluminescence with the photon energy of 1.54 (IR band) and 1.69 eV (R band) has been observed by PL spectrum analysis. A post-annealing process in oxygen atmosphere has been carried out to clarify the emission mechanism. Despite the red shift of the spectra, enhanced emission of the 1.69 eV band together with the weak emission phenomenon of the 1.54 eV band has been found after the post-annealing. The R band is discussed to originate from silicon nanocrystal interface defects. The IR band is concluded to be a coupling effect between electronic and vibrational emissions.  相似文献   

20.
We report the formation of mesoporous zinc sulphide, composed by the fine network of nanoparticles, which was formed via a single precursor Zn(SOCCH3)2Lut2 complex. The complex was chemically synthesized using zinc carbonate basic, 3,5-lutidine and thioacetic acid, in air. The metal precursor complex was characterized using different conventional techniques. Thermogravimetric analysis (TGA) result indicates that the decomposition of the complex starts at 100 °C and continues up to 450 °C, finally yielding ZnS. ZnS nanocrystals were characterized by powder X-ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), N2-sorption isotherm, UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The grain diameter of nanocrystals was found to be 4-5 nm. The material followed Type-IV N2-sorption isotherm, which is the characteristic of mesoporous materials. The band gap energy, as obtained from optical measurements was around 3.8 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号