首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
设计了一种基于衍射元件的两档轴向移动式红外变焦光学系统.系统工作波段为3.7~4.8μm,焦距为80/240mm,F#为4,探测器采用640×512的中波制冷红外探测器,探测器的像元尺寸为15μm×15 μm,该系统具有100%冷光阑效率.在光学设计中采用了衍射元件,大大提高了光学系统的像质,有效减小了系统的体积和重量.对光学系统进行了合理的公差分配和冷反射分析.仿真结果表明,该系统结构紧凑、变倍时间较短、成像质量优异.  相似文献   

2.
6倍制冷型中红外连续变焦光学系统设计   总被引:4,自引:1,他引:3  
张庭成  廖志波 《光学学报》2012,32(11):1122004
提出了一种求解变焦方程的新方法,并针对中红外320×256元制冷型焦平面阵列探测器,设计了一个3.7~4.8 μm波段的透射式红外连续变焦距光学系统,其F数恒定为2,最小焦距值为22 mm,变倍比为6。系统由变焦物镜和二次成像系统构成,包括7片硅、锗透镜,并引入非球面以校正系统各种轴外像差,同时利用两个平面反射镜折叠光路以减小尺寸。在空间频率16 lp/mm处和全焦距范围内,系统各个视场的光学调制传递函数均大于0.55;在接收面为30 μm×30 μm的探测器敏感元内,能量集中度大于80%。因此该系统具有较好的成像质量。  相似文献   

3.
为全面分析杂散光对红外系统成像质量的影响,设计了可见波段0.4 μm~0.7 μm、红外波段3 μm~5 μm,视场角均为2.27°×2.27°的共孔径成像光学系统。分析了杂散光来源,分别研究了带内与带外杂散光对其红外通道成像质量的影响。对于带内杂散光,设计了消杂光结构,采用FRED软件模拟分析了带内杂光抑制能力,结果表明:带内杂散光得到较好抑制,其鬼像影响可忽略不计,太阳杂散光抑制水平PST达到设定的10-8阈值量级。对于带外杂散光,主要研究了1.064 μm和2.6 μm两个波长带外激光对红外成像系统的影响,并利用有限元仿真计算,结果表明:系统反射镜温升达到703 K时,向外发出较强带内红外辐射,到达像面的辐射功率为0.195 mW,可对红外成像面造成强烈噪声干扰。  相似文献   

4.
设计了一种用于长波非制冷红外和半主动激光复合导引的共口径折反式光学系统。为了减小反射式系统的零件加工和装调难度,将卡塞格林系统次反射镜简化为平面反射镜,主反射镜采用金属抛物面,优化目镜组透镜尺寸,避免光路内部遮挡,利用反射式系统一次像面,配合红外材料选取实现红外通道的光学被动消热差设计;在平行光路中设置平板分光和激光窄带滤光片,提高系统分光效率和透过率。设计结果表明:红外通道特征频率35.7 lp/mm处MTF>0.2,激光线性区为2°,满足系统指标要求。  相似文献   

5.
针对像元尺寸为50μm×50μm的长波红外32×32元制冷型凝视焦平面阵列探测器的需要,设计了一种工作波长位于15~35μm的透射式长波红外显微成像光学系统。该系统采用一次性成像方式,且主要由系列透镜构成,其中冷光阑置于光路的出瞳位置。通过对称双胶合透镜组合来校正像差,在-20~40℃温度范围采用光学被动补偿技术实现消热像差。仿真结果表明,当所设计的光学系统的中心波长、焦距、数值孔径、有效放大倍率和空间分辨率分别为27μm,14mm,0.25,10和0.1mm时,在10lp·mm~(-1)特征频率处调制传递函数(MTF)值达到0.369,系统包围圆能量集中度超过80%,能够得到清晰可辨的物像,满足对冷光学系统短结构、高分辨率的应用需求。  相似文献   

6.
陈洁  夏团结  杨童  杨磊  谢洪波 《光学学报》2023,(12):192-201
为提高导引结构的特征分辨能力和全天候工作能力,提出一种长波红外与激光共孔径的双模导引光学系统设计方案,利用被动红外模块搜索目标,通过主动激光雷达模块锁定目标并精确制导。为解决导引头内光学系统尺寸受限的问题,以Ritchey-Chretien结构为共用部分,通过次镜镀分光膜实现长波红外(8~12μm)反射光路与激光(1.064μm)透射光路的组合,并分析了不同光学遮拦情况对非相干成像系统调制传递函数衍射极限的影响。展示了F数为0.98、光学遮拦比为1/3的共孔径双模导引系统的实例,使用多片折射镜片实现对主、次镜残余像差的补偿,利用光学被动式消热差方法完成-40~60℃范围的长波红外无热化,具有良好的热稳定性和可加工性,可为双模导引光学系统的分析与设计提供参考。  相似文献   

7.
针对新一代光电吊舱对轻小型长焦距高清红外变焦成像系统的迫切需求,采用分辨率为1280×1024、像元尺寸为15μm大面阵中波制冷红外探测器,设计了一款变倍比为48、焦距范围为25~1200 mm的中波红外连续变焦光学系统。为了实现小型化设计,采用二次成像、正组机械补偿、平滑换根、结合后组温阑切换变F数,以及光路巧妙折转的设计思路及方法,在保证100%冷阑效率的同时,实现了红外变焦系统的大变倍比与小型化设计。结果表明,该光学系统在-40℃~+60℃温度范围内具有良好的成像质量,且光学最大口径为230 mm,光学总长仅为350 mm,该系统具有结构紧凑、变倍比大、焦距长、分辨率高、成像质量良好等优点,可满足新一代红外成像系统的要求。  相似文献   

8.
操超  廖志远  白瑜  廖胜  范真节 《应用光学》2018,39(6):773-779
针对传统红外连续变焦系统难以同时满足高变倍比和大相对口径的使用要求,通过采用复合变焦光学系统结构,增加传统红外连续变焦光学系统的变焦距范围和相对口径。基于长波红外320×240像元、25 μm×25 μm非制冷焦平面探测器,设计了一款高变倍比大相对口径长波红外变焦光学系统, 光学系统由一个连续变焦部分与两档变焦部分组成,通过引入衍射光学元件校正长焦端色差,工作波段为8 μm~12 μm,焦距变化范围为-9 mm~-272.25 mm,F数为1.4。该系统具有成像质量好、变倍比高、相对口径大、导程小和凸轮曲线平滑等优点。  相似文献   

9.
为提高航空侦查识别目标能力以及满足部队全天候作战需要,设计了一种应用于全景航空侦查相机的可见光/红外双视场成像光学系统。可见光光学系统焦距为165 mm/660 mm,相对孔径为1:8.8,视场角为9.1°×6.8°/2.3°×1.7°;红外光学系统焦距为75 mm/300 mm,相对孔径为1:4,视场角为8.3°×6.2°/2.1°×1.6°。采用有限焦距光学系统前面加一个望远系统的方法实现变倍,根据红外器件及可见光器件的像元尺寸计算出红外系统及可见光系统的奈奎斯特频率分别为33 lp/mm和91 lp/mm。在33 lp/mm处,红外光学系统大、小视场的MTF值分别为为0.35和0.37,在91 lp/mm处,可见光光学系统大、小视场MTF值分别为0.41和0.4,成像质量接近衍射极限,表明光学系统成像质量良好,满足实际工程使用要求。  相似文献   

10.
红外3.7~4.8 μm波段折射/衍射光学系统的消热差设计   总被引:2,自引:0,他引:2  
研究了衍射光学元件在红外折射/衍射混合光学系统中的消热差特性并给出了具体设计实例,该系统工作波段为3.7~4.8 μm,全视场角为7.12°,满足100%冷光阑效率.系统仅采用硅和锗两种材料,设计结果表明,该系统在-50~100℃温度范围内不仅成像质量接近衍射极限,而且结构简单、体积小、质量轻,适用于像元尺寸为30 μm、像元数320×240的凝视焦平面阵列探测器.  相似文献   

11.
双视场/双色红外消热差光学系统设计   总被引:1,自引:1,他引:0  
双色红外光学系统能够同时获取长波红外与中波红外的波段信息,有利于目标的搜索和识别.本文针对红外热像仪的需求,对双视场/双色红外光学系统进行了设计.实现了4.4~5.4μm/7.8~8.8μm双波段同时清晰成像,在F#为2.68情况下,通过切换变倍组完成9°×6.75°/3°×2.25°双视场转换.通过红外材料与光焦度的合理分配实现了折射式被动消热差设计.设计结果表明,系统在-40℃~+60℃工作温度下,像面稳定、像质优良,能够满足红外热像仪的使用需求.  相似文献   

12.
非制冷高变倍比连续变焦光学系统的设计   总被引:3,自引:0,他引:3       下载免费PDF全文
张良  刘红霞 《应用光学》2012,33(2):250-254
针对长波非制冷氧化钒320240像元焦平面阵列探测器,像元间距25 m25 m,采用变焦距光学系统设计原理,引入非球面和衍射面设计技术进行像差平衡,设计了长波红外连续变焦光学系统。该系统工作波段为8 m~12 m,视场为2.86~50连续可变,F数为1.2,变倍比为18∶1,在整个变焦范围内,光学调制传递函数在0.5以上,接近衍射极限,并且全视场能量70%集中在探测器的一个像元内。整个变焦光学系统仅使用一种红外材料(单晶锗)进行像差矫正。  相似文献   

13.
王洪建  叶雁  阳庆国  李泽仁  刘红杰 《强激光与粒子束》2022,34(3):031015-1-031015-6
在微介观诊断中往往因为空间限制,选择具有亮度高、单色性好、对比度强的特征谱线,而忽略了轫致辐射谱线。率先实验设计了特征谱线和轫致辐射谱线的双光谱诊断X射线光源的方法,在中国工程物理研究院“星光Ⅲ”激光装置飞秒激光束靶室上进行实验,激光功率密度大于1.6×1018 W/cm2,脉宽为30 fs,45°入射靶面。在入射靶前侧,设计了用于特征光谱成像的针孔成像光路,获得Cu纳米颗粒靶产生的特征X射线的焦斑图像,为76 μm,大于刃边方法测得半径为54 μm的焦斑。在靶后侧,设计了轫致辐射成像光路,利用PIX射线CCD获得2×5的圆形Ta组图像。实验表明,利用双光谱成像设计合理,适合微介观材料动态诊断,提高诊断效率。  相似文献   

14.
谐波探测被广泛应用于激光光谱技术中,利用它可以提高探测灵敏度。利用1.653 μm的分布反馈式(DFB)二极管激光器作为光源,建立了一套可调谐半导体激光吸收光谱(TDLAS)甲烷探测装置。该装置利用由2块圆形柱面镜构成的光学多通池增加吸收光程,提高探测灵敏度。吸收池基长为15 cm,在112次反射情况下,有效吸收光程达到16.8 m,实现甲烷0.60×10-6(2 s采样时间)的探测极限,可应用于实际大气甲烷的痕量探测。  相似文献   

15.
对单丝直径为20μm,12×9阵列方形面阵的Ge-As-Te-Se组分光纤束进行了测试,并开展红外成像研究。利用5~11μm连续可调谐红外量子级联激光器作为光源,对光纤束损耗进行检测,传输损耗平均为1 dB/cm。设计并加工了基于像方远心成像的紧凑型物镜,总长13.6 mm,直径6 mm,最终实现了2 mm×2 mm视场内100μm分辨率传像。分别在量子级联激光器和非相干黑体光源的照明下,进行了环境温度对成像对比度影响的研究,结果表明,在环境温度较高(>40℃)的条件下,基于量子级联激光器照明可实现高对比度内窥成像。本文对于深入开展红外生物效应研究具有指导意义和实用价值。  相似文献   

16.
建立了工作在一定入射角度范围内的多层衍射光学元件的复合带宽积分平均衍射效率的分析模型。基于衍射光学元件所具有的独特的消色差和消热差性质,设计了一个含有双层衍射光学元件的工作在(3.7~4.8) μm和(7.7~9.5) μm红外双波段光学系统。光学系统的焦距为200 mm,F#为2。采用像元数为320×256、间距为30 μm的制冷型探测器。该系统在空间频率17 lp/mm时,中、长波红外MTF分别高于0.66和0.54;最大RMS半径小于11.702 μm;波前像差小于0.191 7λ;最大离焦量小于焦深;在-55℃~71℃范围内实现了无热化设计。入射到衍射面上的角度为0°~5.19°,该双层衍射光学元件在中波和长波波段的复合带宽积分平均衍射效率分别为99.81%和97.36%。含有双层衍射光学元件的红外双波段光学系统结构简单,像质优良,可以广泛应用于军事探测系统中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号