首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
This paper discusses the self-assembly of block copolymers into vesicular morphology. After a brief state of art of the field, a system based on an amphiphilic poly(butadiene)-b-poly(-L-glutamic acid) (PB-b-PGA) diblock copolymer in aqueous solution is discussed in detail. The aggregation behavior of this block copolymer has been investigated by means of fluorescence spectroscopy, dynamic (DLS) and static (SLS) light scattering as well as transmission electron microscopy (TEM). The diblock copolymer was found to form well-defined vesicles in water. The size of these so-called polymersomes or peptosomes could be reversibly manipulated as a function of both pH and ion strength. Depending on the pH of the aqueous solution, the hydrodynamic radii of these vesicles were found to vary from 100 nm to 150 nm. By cross-linking the 1,2-vinyl double bonds present in the polybutadiene block, the ability to transform a transient supramolecular self-organized aggregate into a permanent “shape-persistent stimuli-responsive nanoparticle” has been demonstrated. Received 25 June 2002 and Received in final form 22 October 2002 Published online: 11 March 2003  相似文献   

2.
We investigate polyelectrolyte brushes using both scaling arguments and molecular dynamics simulations. As a main result, we find a novel collapsed brush phase. In this phase, the height of the brush results from a competition between steric repulsion between ions and monomers and an attractive force due to electrostatic correlations. As a result, the monomer density inside the brush is independent of the grafting density and the polymerization index. For small ionic and monomer radii (or for large Bjerrum length) the brush undergoes a first-order phase transition from the osmotic into the collapsed state. Received 26 September 2000  相似文献   

3.
Giant vesicles prepared from the diblock copolymer polybutadien-b-polyethyleneoxide (PB-PEO) exhibit a shear surface viscosity, which is about 500 times higher than those found in common phospholipid bilayers. Our result constitutes the first direct measurement of the shear surface viscosity of such polymersomes. At the same time, we measure bending and stretching elastic constants, which fall in the range of values typical for lipid membranes. Pulling out a tether from an immobilized polymersome and following its relaxation back to the vesicle body provides an estimate of the viscous coupling between the two monolayers composing the polymer membrane. The detected intermonolayer friction is about an order of magnitude higher than the characteristic one for phospholipid membranes. Polymersomes are tough vesicles with a high lysis tension. This, together with their robust rheological properties, makes them interesting candidates for a number of technological applications. Received 2 March 2001 and Received in final form 15 February 2002  相似文献   

4.
It is well known that the morphology of block copolymer aggregates depends on polymer properties such as the molecular weight, the relative block length, and the chemical nature of the repeat unit. Recently, we have shown that if aggregates are allowed to self-assemble in solution, then in addition to the above factors, a high degree of control over the aggregate architecture can be achieved by adjusting the solution conditions. Factors such as the water content in the solvent mixture, the solvent nature and composition, the presence of additives (ions, surfactants, and homopolymer) and the polymer concentration were successfully employed to control the aggregate shape and size. In this paper, we review a series of studies performed in our group to show how solution properties can control the architecture of aggregates prepared from a given copolymer. The control mechanism is explained in terms of the effect of each property on the forces that govern the formation of any given morphology, namely the core-chain stretching, corona-chain repulsion and interfacial tension. Received 30 April 2002 and Received in final form 3 September 2002 Published online: 21 January 2003  相似文献   

5.
We develop a continuum theory of linear viscoelastic response in oriented monodomain nematic elastomers. The expression for the dissipation function is analogous to the Leslie-Ericksen version of anisotropic nematic viscosity; we propose the relations between the anisotropic rubber moduli and new viscous coefficients. A new dimensionless number is introduced, which describes the relative magnitude of viscous and rubber-elastic torques. In an elastic medium with an independently mobile internal degree of freedom, the nematic director with its own relaxation dynamics, the model shows a dramatic decrease in the dynamic modulus in certain deformation geometries. The degree to which the storage modulus does not altogether drop to zero is shown to be both dependent on frequency and to be proportional to the semi-softness, the non-ideality of a nematic network. We consider the most interesting geometry for the implementation of the theory, calculating the dynamic response to an imposed simple shear and making predictions for effective moduli and (exceptionally high) loss factors. Received 16 October 2000 and Received in final form 10 December 2000  相似文献   

6.
High aspect ratio clay particles dispersed in a lamellar matrix composed of a block copolymer or a lyotropic smectic are expected to orient with the lamellae. Under such conditions, the smectic medium transmits elastic forces among particles in addition to the usual forces produced by dispersion and electrostatic interactions. We compute these elastic forces and explore their influence on the thermodynamics of lamellar-clay dispersions. It turns out that the large aspect ratio of the clay implies a long range of interaction at the two particle level. Consequently, virial expansions break down at very low loadings of particles. We examine the thermodynamic behavior of assemblies of flexible and rigid clay plates in both dilute and semidilute concentration regimes. Our results should have implications for the design of nanocomposites formulated with block copolymers and lyotropic liquid crystals. Received 11 August 2000  相似文献   

7.
The viscoelastic moduli (elasticity and dilational viscosity) of monolayers of PVAc + P4HS has been studied over a broad frequency range (0.1 mHz-200 kHz) using a combination of relaxation and capillary-waves techniques. The analysis of the surface pressure, the elasticity and the viscosity on the semidilute regime show that the air-water interface is a good solvent for the monolayers of PVAc-rich blends, and a poor (near-Θ) solvent for the monolayers of P4HS-rich blends. The solvent quality changes continuously over a broad concentration range. The results of viscoelastic moduli show that there is a broad relaxation process in the low-frequency range ( ω < 1 Hz). While for PVAc-rich monolayers this relaxation process follows the reptation-like behavior described by Noskov, for P4HS-rich monolayers the model does not describe the amplitudes of the different relaxation modes. For PVAc-rich monolayers two processes are clearly distinguished at higher frequencies: one centered at around 500 Hz and another one at around 40 kHz. However, for P4HS-rich monolayers only one broad relaxation mode is found below 1 kHz. The crossover from one type of behavior to the other one takes place in a very narrow blend-composition range, and is not clearly related to the crossover from good- to poor-solvent condition. Received 7 June 2002 and Received in final form 5 November 2002 RID="a" ID="a"Current address: Complex Fluids Lab., Cranbury Res. Ctr., Rhodia Inc., Cranbury, NJ 08512-7500, USA. RID="b" ID="b"e-mail: rgrubio@quim.ucm.es  相似文献   

8.
We study the lateral and transverse diffusion of amphiphiles in two-component bilayer membranes, using a coarse-grained model for amphiphilic molecules and combined Monte Carlo-Molecular Dynamics simulations. Membrane structural properties, such as the mean thickness, are also measured. The dependence of such properties on membrane composition, inter-molecular interactions, and amphiphile stiffness is determined. In particular, we show that addition of shorter amphiphiles drives the model membrane towards a more fluid state, with increased amphiphile lateral diffusion rates. These results can be understood in the framework of a simple free-volume model. Furthermore, we observe an increase in the trans-membrane diffusion when the interaction energy of amphiphiles with their neighboring molecules is decreased. Received: 6 December 2002 / Accepted: 17 April 2003 / Published online: 27 May 2003 RID="a" ID="a"e-mail: imparato@mpikg-golm.mpg.de RID="b" ID="b"e-mail: shillcock@mpikg-golm.mpg.de RID="c" ID="c"e-mail: lipowsky@mpikg-golm.mpg.de  相似文献   

9.
Surface quasi-elastic light scattering has been applied to a spread film of a block copolymer of polystyrene and polydimethyl siloxane. The influence of surface concentration (surface pressure) at a fixed surface wave number has been explored. The capillary wave frequency and damping showed a similar dependence on the surface concentration as values obtained earlier, but due to a more appropriate analysis of the correlation functions, surface visco-elastic moduli obtained were distinctly different. By correlating the values obtained with the variations in solvated polystyrene layer thickness from neutron reflectometry, the maximum in dilational modulus was shown to occur at the same nominal surface concentration where the layer begins to stretch and take on brush-like behaviour. This same surface concentration is where the relaxation time of the spread film also has a maximum value, the relaxation time being calculated using the standard linear model of visco-elasticity, which was found to fit the frequency dependence of the surface tension and dilational moduli at the resonant nominal surface concentration of 3.1 mg m-2. Received 21 August 2001 and Received in final form 11 January 2002  相似文献   

10.
We study the influence of diffusion on the scaling properties of the first order structure function, S1, of a two-dimensional chaotically advected passive scalar with finite lifetime, i.e., with a decaying term in its evolution equation. We obtain an analytical expression for S1 where the dependence on the diffusivity, the decaying coefficient and the stirring due to the chaotic flow is explicitly stated. We show that the presence of diffusion introduces a crossover length-scale, the diffusion scale (Ld), such that the scaling behaviour for the structure function is analytical for length-scales shorter than Ld, and shows a scaling exponent that depends on the decaying term and the mixing of the flow for larger scales. Therefore, the scaling exponents for scales larger than Ld are not modified with respect to those calculated in the zero diffusion limit. Moreover, Ld turns out to be independent of the decaying coefficient, being its value the same as for the passive scalar with infinite lifetime. Numerical results support our theoretical findings. Our analytical and numerical calculations rest upon the Feynmann-Kac representation of the advection-reaction-diffusion partial differential equation. Received 18 March 2002 Published online 31 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号