首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the cavitation and acoustic peak negative pressure in the high-intensity focused ultrasound(HIFU)Held is analyzed in water and tissue phantom.The peak negative pressure at the focus is determined by a hybrid approach combining the measurement with the simulation.The spheroidal beam equation is utilized to describe the nonlinear acoustic propagation.The waveform at the focus is measured by a fiber optic probe hydrophone in water.The relationship between the source pressure amplitude and the excitation voltage is determined by fitting the measured ratio of the second harmonic to the fundamental component at the focus,based on the model simulation.Then the focal negative pressure is calculated for arbitrary voltage excitation in water and tissue phantom.A portable B-mode ultrasound scanner is applied to monitor HIFU-induced cavitation in real time,and a passive cavitation detection(PCD)system is used to acquire the bubble scattering signals in the HIFU focal volume for the cavitation quantification.The results show that:(1)unstable cavitation starts to appear in degassed water when the peak negative pressure of HIFU signals reaches 13.5 MPa;and(2)the cavitation activity can be detected in tissue phantom by B-mode images and in the PCD system with HIFU peak negative pressures of 9.0 MPa and 7.8 MPa,respectively,which suggests that real-time B-mode images could be used to monitor the cavitation activity in two dimensions,while PCD systems are more sensitive to detect scattering and emission signals from cavitation bubbles.  相似文献   

2.
This paper compares the efficiency of flowing polymer- and lipid-shelled microbubbles (MBs) in the heating and cavitation during focused ultrasound exposures. Temperature and cavitation activity were simultaneously measured as the two types of shelled MBs and saline flowing through a 3 mm diameter vessel in the phantom with varying flow velocities (0-20 cm/s) at different acoustic power levels (0.6-20 W) with each exposure for 5 s. Temperature and cavitation for the lipid-shelled MBs were higher than those for the polymer-shelled MBs. Temperature rise decreased with increasing flow velocities for the two types of shelled MBs and saline at acoustic power 1.5 W. At acoustic power 11.1 W, temperature rise increased with increasing flow velocities for the lipid-shelled MBs. For the polymer-shelled MBs, the temperature rise increased with increasing flow velocities from 3-15 cm/s and decreased at 20 cm/s. Cavitation increased with increasing flow velocity for the two shelled MBs and there were no significant changes of cavitation with increasing flow velocities for saline. These results suggested that lipid-shelled MBs may have a greater efficiency than polymer-shelled MBs in heating and cavitation during focused ultrasound exposures.  相似文献   

3.
Chen H  Li X  Wan M 《Ultrasonics》2006,44(Z1):e427-e429
In many therapeutic applications of high-intensity focused ultrasound (HIFU) the appearance of cavitation bubbles is unavoidable, whereas the dynamics of the bubbles induced by HIFU have not been clarified. The objective of the present work is to observe the inception process of cavitation bubble clouds generated by HIFU transducer in water using high-speed photography. Sequential images captured within 600 micros after the onset of ultrasound transmission show the dynamics of cavitation bubbles' generation, growth, deformation, expansion and collapse in the focal region. However, when the observation time is narrowed to the initial 145 micros, both the still and streak images reveal that the cavitation bubbles astonishingly stay stable in the focal region for at least 60 micros. The results imply that through adjusting the HIFU exposure time while other physical parameters are appropriately chosen, it might be possible to control the generation of stable cavitation bubbles locally in the focal region.  相似文献   

4.
The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5 kHz and 100 kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5 W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5 μs) and PRF to 10 kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy.  相似文献   

5.
This paper presented an ultrasound line-by-line scanning method of spatial–temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin–agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial–temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.  相似文献   

6.
Whilst sonothrombolysis is a promising and noninvasive ultrasound technique for treating blood clots, bleeding caused by thrombolytic agents used for dissolving clots and potential obstruction of blood flow by detached clots (i.e., embolus) are the major limitations of the current approach. In the present study, a new sonothrombolysis method is proposed for treating embolus without the use of thrombolytic drugs. Our proposed method involves (a) generating a spatially localised acoustic radiation force in a blood vessel against the blood flow to trap moving blood clots (i.e., generation of an acoustic net), (b) producing acoustic cavitation to mechanically destroy the trapped embolus, and (c) acoustically monitoring the trapping and mechanical fractionation processes. Three different ultrasound transducers with different purposes were employed in the proposed method: (1) 1-MHz dual focused ultrasound (dFUS) transducers for capturing moving blood clots, (2) a 2-MHz High Intensity Focused Ultrasound (HIFU) source for fractionating blood clots and (3) a passive acoustic emission detector with broad bandwidth (10 kHz to 20 MHz) for receiving and analysing acoustic waves scattered from a trapped embolus and acoustic cavitation. To demonstrate the feasibility of the proposed method, in vitro experiments with an optically transparent blood vessel-mimicking phantom filled with a blood mimicking fluid and a blood clot (1.2 to 5 mm in diameter) were performed with varying the dFUS and HIFU exposure conditions under various flow conditions (from 1.77 to 6.19 cm/s). A high-speed camera was used to observe the production of acoustic fields, acoustic cavitation formation and blood clot fragmentation within a blood vessel by the proposed method. Numerical simulations of acoustic and temperature fields generated under a given exposure condition were also conducted to further interpret experimental results on the proposed sonothrombolysis. Our results clearly showed that fringe pattern-like acoustic pressure fields (fringe width of 1 mm) produced in a blood vessel by the dFUS captured an embolus (1.2 to 5 mm in diameter) at the flow velocity up to 6.19 cm/s. This was likely to be due to the greater magnitude of the dFUS-induced acoustic radiation force exerted on an embolus in the opposite direction to the flow in a blood vessel than that of the drag force produced by the flow. The acoustically trapped embolus was then mechanically destructed into small pieces of debris (18 to 60 μm sized residual fragments) by the HIFU-induced strong cavitation without damaging the blood vessel walls. We also observed that acoustic emissions emitted from a blood clot captured by the dFUS and cavitation produced by the HIFU were clearly distinguished in the frequency domain. Taken together, these results can suggest that our proposed sonothrombolysis method could be used as a promising tool for treating thrombosis and embolism through capturing and destroying blood clots effectively.  相似文献   

7.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.  相似文献   

8.
范鹏飞  于洁  杨鑫  屠娟  郭霞生  黄品同  章东 《中国物理 B》2017,26(5):54301-054301
High intensity focused ultrasound(HIFU) has shown a great promise in noninvasive cancer therapy. The impact of acoustic cavitation on the lesion formation induced by HIFU is investigated both experimentally and theoretically in transparent protein-containing gel and ex vivo liver tissue samples. A numerical model that accounts for nonlinear acoustic propagation and heat transfer is used to simulate the lesion formation induced by the thermal effect. The results showed that lesions could be induced in the samples exposed to HIFU with various acoustic pressures and pulse lengths. The measured areas of lesions formed in the lateral direction were comparable to the simulated results, while much larger discrepancy was observed between the experimental and simulated data for the areas of longitudinal lesion cross-section. Meanwhile,a series of stripe-wiped-off B-mode pictures were obtained by using a special imaging processing method so that HIFUinduced cavitation bubble activities could be monitored in real-time and quantitatively analyzed as the functions of acoustic pressure and pulse length. The results indicated that, unlike the lateral area of HIFU-induced lesion that was less affected by the cavitation activity, the longitudinal cross-section of HIFU-induced lesion was significantly influenced by the generation of cavitation bubbles through the temperature elevation resulting from HIFU exposures. Therefore, considering the clinical safety in HIFU treatments, more attention should be paid on the lesion formation in the longitudinal direction to avoid uncontrollable variation resulting from HIFU-induced cavitation activity.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(5):1745-1751
Background: Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs’ vaporization threshold, there were little reports on their cavitation and thermal effects.Object: In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters.Methods: Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion.Results: Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light.  相似文献   

10.
高强度聚焦超声(HIFU)治疗中的驱动电功率对治疗效率起着非常关键的作用,驱动电功率控制的精准性势必会影响治疗的效率和安全性。前期研究表明:HIFU治疗过程中焦域瞬态物理特性的变化会导致换能器的负载阻抗发生变化,进而影响HIFU驱动电功率,但驱动电功率与焦域瞬态物理特性之间的影响关系及规律尚不明确。该文基于电压、电流传感器、空化检测探头和温度传感器等器件,构建了一种HIFU治疗中驱动电功率实时监测及焦域声空化、温度检测系统。基于该实验研究系统,以离体牛心组织作为HIFU辐照对象,分别研究了HIFU焦域温度变化、声空化及组织损伤与驱动电功率之间的变化关系及规律。研究结果表明:当焦域温度升高时,驱动电功率缓慢上升,驱动电功率与温度变化有良好的相关性;当空化产生时,驱动电功率出现明显的波动;当组织出现损伤时,驱动电功率呈陡然下降的变化。三种情景下,驱动电功率变化有明显区别,这有望为区分HIFU治疗过程中焦域处发生损伤和空化以及实时监测靶组织损伤程度提供一种新的解决方案。  相似文献   

11.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   

12.
陈楚怡  于洁  陈功  马勇  郭霞生  屠娟  章东 《声学学报》2015,40(4):563-568
提出一种采用B超图像实现高强聚焦超声(HIFU)治疗时声空化的时空量化监控的方法。首先,采用B模式实时成像系统对不同声辐照能量下的HIFU在凝胶仿体中引发的超声空化进行实验监测;接着,利用二维数字图像处理算法消除高强聚焦超声(HIFU)在B超图像中产生的干涉条纹,并在此基础上,对B超成像中观察到的高亮区域的面积变化情况进行量化分析;最后,进一步讨论了驱动声压或脉冲宽度对超声空化产生的高亮区域的生成速度和面积大小的影响。结果显示该方法可以有效去除B超图像中的干涉条纹,并对HIFU引发的空化现象进行实时监测。实验结果还表明辐照声能量的提高将引发更强烈的声空化行为,并且显著缩短HIFU引发的空化泡群的初始生成时间。研究结果对进一步优化HIFU治疗有重要意义。   相似文献   

13.
Gas nuclei in water are usually too small to be directly observed. They will grow into bubbles under the negative pressure, which is called cavitation (heterogeneous cavitation). In this study, the gas nuclei in the hydrophilic and hydrophobic silica particle suspension were investigated using the transient cavitation threshold measured by a high-intensity focused ultrasound (HIFU). The transient cavitation bubbles were also observed by a high-speed camera. The results showed that the nuclei only exist on the surface of hydrophobic particles. Furthermore, the aggregation experiments revealed that the aggregates were only formed in the hydrophobic silica suspension by ultrasonic standing waves (USW) at 200 kHz. This distinct difference was mainly due to the formation of gas nuclei on hydrophobic silica particles, which grew and coalesced into stable bubbles under the 200 kHz USW. The aggregation process in suspension was observed by a CCD camera. Moreover, the cavitation thresholds and acoustic radiation forces were analyzed to explain the mechanism of the acoustic aggregation. This study showed a very promising acoustic method for the selective aggregation of hydrophobic particles, which might be efficiently used in the mineral separation industry.  相似文献   

14.
Blood vessel is one of the most important targets encountered during focused ultrasound (FU) therapy. The lasting high temperature caused by continuous FU can result in structural modification of small vessel. For the vessel with a diameter larger than 2 mm, convective cooling can significantly weaken the thermal effect of FU. Meanwhile, the continued presence of ultrasound will cause repetitive cavitation and acoustic microstreaming, making comprehension of continuous wave induced cavitation effect in large vessels necessary. The Sonoluminescence (SL) method, mechanical damage observation and high-speed camera were used in this study to investigate the combination effect of ultrasound contrast agents (UCAs) and continuous FU in large phantom vessels with a diameter of 10 mm without consideration of thermal effect. When the focus was positioned at the proximal wall, cylindrical hole along the acoustic axis opposite the ultrasound wave propagation direction was observed at the input power equal to or greater than 50 W. When the focus was located at the distal wall, only small tunnels can be found. The place where the cylindrical hole formed was corresponding to where bubbles gathered and emitted brilliant light near the wall. Without UCAs neither such bright SL nor cylindrical hole can be found. However, the UCAs concentration had little influence on the SL distribution and the length of cylindrical hole. The SL intensity near the proximal vessel wall and the length of the cylindrical hole both increased with the input power. It is suggested that these findings need to be considered in the large vessel therapy and UCAs usage.  相似文献   

15.
This letter reports on the use of frequency sweeps to probe acoustic cavitation activity generated by high-intensity focused ultrasound (HIFU). Unprecedented enhancement and quenching of HIFU cavitation activity were observed when short frequency sweep gaps were applied in negative and positive directions, respectively. It was revealed that irrespective of the frequency gap, it is the direction and frequency sweep rate that govern the cavitation activity. These effects are related to the response of bubbles generated by the starting frequency to the direction of the frequency sweep, and the influence of the sweep rate on growth and coalescence of bubbles, which in turn affects the active bubble population. These findings are relevant for the use of HIFU in chemical and therapeutic applications, where greater control of cavitation bubble population is critical.  相似文献   

16.
Acoustic field distribution was determined in HIFU sonoreactors as well as localization of cavitation activity by crossing different techniques: modeling, hydrophone measurements, laser tomography and SCL measurements. Particular care was taken with quantification of this last technique by pixels or photon counting. Cavitation bubbles generated by HIFU are mainly located on the outer layer of the propagation cone in the post-focal zone. Greatest acoustic activity is not located at the geometrical focal, but corresponds to a high concentration of bubbles zone. On the contrary, the main sonochemical activity shifts slightly toward the transducer, whereas quenching of inertial cavitation is observed directly at the focal. Finally, SCL thresholds have been determined.  相似文献   

17.
Boiling histotripsy is a High Intensity Focused Ultrasound (HIFU) technique which uses a number of short pulses with high acoustic pressures at the HIFU focus to induce mechanical tissue fractionation. In boiling histotripsy, two different types of acoustic cavitation contribute towards mechanical tissue destruction: a boiling vapour bubble and cavitation clouds. An understanding of the mechanisms underpinning these phenomena and their dynamics is therefore paramount to predicting and controlling the overall size of a lesion produced for a given boiling histotripsy exposure condition. A number of studies have shown the effects of shockwave heating in generating a boiling bubble at the HIFU focus and have studied its dynamics under boiling histotripsy insonation. However, not much is known about the subsequent production of cavitation clouds that form between the HIFU transducer and the boiling bubble. The main objective of the present study is to examine what causes this bubble cluster formation after the generation of a boiling vapour bubble. A numerical simulation of 2D nonlinear wave propagation with the presence of a bubble at the focus of a HIFU field was performed using the k-Wave MATLAB toolbox for time domain ultrasound simulations, which numerically solves the generalised Westervelt equation. The numerical results clearly demonstrate the appearance of the constructive interference of a backscattered shockwave by a bubble with incoming incident shockwaves. This interaction (i.e., the reflected and inverted peak positive phase from the bubble with the incoming incident rarefactional phase) can eventually induce a greater peak negative pressure field compared to that without the bubble at the HIFU focus. In addition, the backscattered peak negative pressure magnitude gradually increased from 17.4 MPa to 31.6 MPa when increasing the bubble size from 0.2 mm to 1.5 mm. The latter value is above the intrinsic cavitation threshold of –28 MPa in soft tissue. Our results suggest that the formation of a cavitation cloud in boiling histotripsy is a threshold effect which primarily depends (a) the size and location of a boiling bubble, and (b) the sum of the incident field and that scattered by a bubble.  相似文献   

18.
Vaezy S  Vaezy S  Starr F  Chi E  Cornejo C  Crum L  Martin RW 《Ultrasonics》2005,43(4):265-269
Objective: We have shown that High-Intensity Focused Ultrasound (HIFU) can effectively control bleeding from injuries to solid organs such as liver, spleen, and lung. Achievement of hemostasis was augmented when a homogenate of tissue and blood was formed. The objective of this study was to investigate quantitatively the effect of homogenate production on HIFU application time for hemostasis. Possible mechanisms involved in homogenate production were also studied.Methods: Ten anesthetized rabbits had laparotomy and liver exposure. Liver incisions, 15-25 mm long and 3-4 mm deep, were made followed immediately by HIFU application. Two electrical powers of 80 and 100 W corresponding to focal acoustic intensities of 2264 and 2829 W/cm2, respectively were used. Tissue and homogenate temperatures were measured. Smear and histological tissue sample analysis using light microscopy were performed.Results: In treatments with homogenate formation, hemostasis was achieved in 76 ± 1.3 s (Mean ± Standard Error Mean: SEM) at 80 W. In treatments without homogenate formation (at 80 W), hemostasis was achieved in 106 ± 0.87 s. At 100 W, hemostasis was achieved in 46 ± 0.3 s. The time required for homogenate formation, at 80 and 100 W were 60 ± 2.5 and 23 ± 0.3 s, respectively. The homogenate temperature was 83 °C (SEM 0.6 °C), and the non-homogenate tissue temperature at the treatment site was 60 °C (SEM 0.4 °C). The smear and histological analysis showed significant blood components and cellular debris in the homogenate, with some intact cells.Conclusion: The HIFU-induced homogenate of blood and tissue resulted in a statistically significant shorter HIFU application time for hemostasis. The incisions with homogenate had higher temperatures as compared to incisions without homogenate. Further studies of the correlation between homogenate formation and temperature must be done, as well as studies on the long-term effects of homogenate in achieving hemostasis.  相似文献   

19.
An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial–temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (⩽50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (⩾70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.  相似文献   

20.
Estimating the focal size and position of a high-intensity focused ultrasound (HIFU) transducer remains a challenge since traditional methods, such as hydrophone scanning or schlieren imaging, cannot tolerate high pressures, are directional, or provide low resolution. The difficulties increase when dealing with the complex beam pattern of a multielement HIFU transducer array, e.g., two transducers facing each other. In the present study we show a novel approach to the visualization of the HIFU focus by using shockwave-generated bubbles and a diagnostic B-mode scanner. Bubbles were generated and pushed by shock waves toward the HIFU beam, and were trapped in its pressure valleys. These trapped bubbles moved along the pressure valleys and thereby delineated the shape and size of the HIFU beam. The main and sidelobes of 1.1- and 3.5 MHz HIFU beams were clearly visible, and could be measured with a millimeter resolution. The combined foci could also be visualized by observing the generation of sustained inertial cavitation and enhanced scattering. The results of this study further demonstrate the possibility of reducing the inertial cavitation threshold by the local introduction of shock wave-generated bubbles, which might be useful when bubble generation and cavitation-related bioeffects are intended within a small region in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号