首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 105 毫秒
1.
Two kinds of room‐temperature ionic liquids, 1‐butyl‐3‐methylimidazolium bromide ([BMIM]Br) and 1‐butyl‐3‐methylimidazolium tetrafluoroboride ([BMIM]BF4), were used as solvent, and the adsorption of the ionic liquids themselves and of N‐methylimidazole (NMIM) were investigated by electrochemical surface‐enhanced Raman scattering (SERS) over a wide potential window. The results revealed that the cation of ionic liquid adsorbed onto Cu surface with different configurations in different potential ranges. When the potential was changed from the negative to the positive range, the orientation underwent a change from flat to vertical, and the onset potential for the orientation change was dependent on the types of anion of the ionic liquid. The ionic liquid in bulk solution exhibited a remarkable effect on the adsorption of NMIM. The electrode surface structure changed from adsorbing the ionic liquid at the negative potential to coadsorbing the ionic liquid and NMIM at relative positive potential for the [BMIM]BF4 liquids, and formed films of NMIM at extremely positive potential. Due to the strong specific adsorption of Br, the coadsorption of ionic liquid and NMIM was not observed in the system [BMIM]Br. By simulating the electrode surroundings, two surface complexes [Cu(NMIM)4Br]Br·H2O and [Cu(NMIM)4](BF4)2 were synthesized by the electrochemical method in the corresponding ionic liquids for modeling the surface coordination chemistry of NMIM. The surface coordination configuration of NMIM and ionic liquids is proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The ionic liquid polymer electrolyte (IL-PE) membrane is prepared by ultraviolet (UV) cross-linking technology with polyurethane acrylate (PUA), methyl methacrylate (MMA), ionic liquid (Py13TFSI), lithium salt (LiTFSI), ethylene glycol dimethacrylate (EGDMA), and benzoyl peroxide (BPO). N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py13TFSI) ionic liquid is synthesized by mixing N-methyl-N-propyl pyrrolidinium bromide (Py13Br) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The addition of Py13TFSI to polymer electrolyte membranes leads to network structures by the chain cross-linking. The resultant electrolyte membranes display the room temperature ionic conductivity of 1.37 × 10?3 S cm?1 and the lithium ions transference number of 0.22. The electrochemical stability window of IL-PE is about 4.8 V (vs. Li+/Li), indicating sufficient electrochemical stability. The interfacial resistances between the IL-PE and the electrodes have the less change after 10 cycles than before 10 cycles. IL-PE has better compatibility with the LiFePO4 electrode and the Li electrode after 10 cycles. The first discharge performance of Li/IL-PE/LiFePO4 half-cell shows a capacity of 151.9 mAh g?1 and coulombic efficiency of 87.9%. The discharge capacity is 131.9 mAh g?1 with 95.5% coulombic efficiency after 80 cycles. Therefore, the battery using the IL-PE exhibits a good cycle and rate performance.  相似文献   

3.
The electrodeposition of metallic Copper in binary mixture ionic liquid/organic solvent (tri-n-octylmethylammonium chloride (TOMAC))/chloroform (CHCl3) was investigated. The electrochemical behavior of Cu(II) in TOMAC/CHCl3 at glassy carbon working electrode at room temperature was studied by cyclic voltammetry and spectroscopy impedance. The results from the cyclic voltammetry showed that the electrodeposition of metallic Cu in the binary mixture ionic liquid/organic solvent was an irreversible process and was controlled by the diffusion of Cu(II) on a glassy carbon working electrode. The average value of αnα was found to be 0.23 at 25 °C and the diffusion coefficient (D0) of Cu(II) was calculated to be 7.12 10− 9 cm2/s at room temperature. The performance of TOMAC ionic liquid such as internal resistance has been investigated with electrochemical impedance spectroscopy (EIS). The scanning electron microscopy (SEM) micrographs was used to observe that the copper plating was moderately dense and contains fine crystallites with average sizes of about 1 μm at room temperature. Energy dispersive X-ray analysis (EDAX) profile showed that the obtained film was copper.  相似文献   

4.
采用溶液浇铸法将N-甲基-N-丙基哌啶二(三氟甲基磺)亚胺(PP13TFSI)、二(三氟甲基磺)亚胺锂与偏氟乙烯-六氟丙烯共聚物(P(VdF-HFP))混合制备离子液体凝胶聚合物电解质(ILGPEs). 通过扫描电子显微镜观察发现,这种离子液体凝胶聚合物电解质由于液体相的均匀分布而具有疏松的结构. 采用电化学阻抗、计时电流法、线性扫描伏安法测试了电解质的离子电导率、锂离子迁移数和电化学窗口. 室温下离子液体凝胶聚合物电解质的离子电导率和锂离子迁移数分别是0.79 mS/cm和0.71,电化学窗口为0~5.1 Vvs. Li+/Li. 电池性能测试表明,这种离子液体凝胶聚合物电解质在Li/LiFePO4电池中是稳定的,放电容量在30、75和150mA/g倍率下分别为135、117和100 mAh/g,电池经100个循环后容量保持在100%而几乎没有衰减.  相似文献   

5.
This paper describes the preparation and characterization of poly(vinyl alcohol) (PVA)-added ionic liquid-based ion conductors. The polymer electrolyte is incorporated with magnesium triflate [Mg(CF3SO3)2 or MgTf] as salt and 1-butyl-3-methylimidazolium bromide (BmImBr) as ionic liquid. Differential scanning calorimetry (DSC) is carried out to investigate the glass transition temperature which is used to study the plasticizing effect of the ionic liquid. The highest conducting ionic liquid-based polymer electrolyte is used to fabricate electrical double-layer capacitors (EDLC). The electrochemical potential window is evaluated using linear sweep voltammetry (LSV). The electrochemical capacitance of the EDLC is evaluated through cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD). The electrochemical potential window of ionic liquid-added polymer electrolyte is extended from 1.35 to 2.6 V. Cyclic voltammetry (CV) proves the improvement in specific capacitance of the electrical double-layer capacitors (EDLCs) containing ionic liquid-added polymer electrolyte.  相似文献   

6.
Nanocomposite biopolymer electrolyte was prepared by solution-casting technique. Carboxymethyl cellulose from kenaf bast fibre, ammonium acetate, (1-butyl)trimethyl ammonium bis(trifluoromethylsulfonyl)imide ionic liquid and silica nanofiller was used to prepare the biopolymer electrolyte samples. The films were characterized by Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, scanning electron microscopy, transference number measurement and linear sweep voltammetry. The interactions of doping salt, ionic liquid and inorganic nanofiller with the host biopolymer were confirmed by FTIR study. The highest conductivity achieved was 8.63 × 10?3 S cm?1 by the incorporation of 1 wt% of SiO2 at ambient temperature. The electrochemical stability of the highest conducting sample was stable up to 3.4 V, and the ion transference number in the film was 0.99.  相似文献   

7.
We report an in situ measurement of the interaction of an imidazolium‐based room temperature ionic liquid with both pure silver and a graphene‐over‐silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra of the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. These results illustrate the effectiveness of surface‐enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we reported for the first time magnesium electrodeposition and dissolution processes in the ionic liquid of BMIMBF4 with 1 M Mg(CF3SO3)2 at room temperature. Our study found that complete electrochemical reoxidation of the electrodeposited magnesium film was feasible only on Ag substrate, comparing with the Pt, Ni, and stainless-steel. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) results showed that magnesium was found in the deposited film and the deposits were dense. The electrodeposition of magnesium on Ag substrate in the ionic liquid was considered to be a reversible process by cyclic voltammetry. Plots of peak current versus the square root of the scan rate were found to be linear, which indicates that the mass-transport process of electroactive species was mainly diffusion controlled. The diffusion coefficient D values of electroactive species were calculated from cyclic voltammetry and chronoamperometry, respectively.  相似文献   

9.
An ionic liquid-modified carbon nanotubes paste electrode (IL/CNTPE) has been fabricated using hydrophilic ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) as a binder. This electrode showed enhanced electrochemical response and strong analytical activity towards the direct electrochemical oxidation of diclofenac (DCF). The electron transfer coefficient, α, and charge transfer resistance (R ct) of DCF at the modified electrode were calculated. Under optimal conditions at pH 7.0, the anodic peak currents increased linearly with the concentration of DCF in the range of 0.5–300 μmol L?1 with a detection limit of 0.2 μmol L?1 (3σ). The interferences of foreign substances were investigated. Differential pulse voltammetry was used to check the applicability of the proposed sensor to the determination of DCF in real samples with satisfactory results.  相似文献   

10.
The electrochemical conversion of CO2 into value‐added products using room temperature ionic liquids as solvent/electrolyte has been proposed as an alternative to minimize the environmental effects of CO2 emissions. A key issue in the design of electrochemical systems for the reduction of CO2 is the in situ identification of intermediate surface species as well as reaction products. Copper electrodes, besides being used as cathodes in the electrochemical reduction of CO2, present surface‐enhanced Raman scattering (SERS) when properly activated. In this sense, the electrochemical reduction of CO2 over a copper electrode in the room temperature ionic liquids 1‐n‐butyl‐3‐methyl imidazolium tetrafluoroborate (BMI.BF4) was investigated by cyclic voltammetry and by in situ SERS. The cyclic voltammetries have shown that the presence of CO2 on the BMI.BF4 anticipates the reduction of BMI+ to the corresponding carbene. Fourier‐transform‐SERS spectra excited at 1064 nm and SERS spectra excited at 632.8 nm have shown vibrational signals from adsorbed CO. These SERS results indicated that CO adsorbs on the copper surface at two different surface sites. The observation of a 2275 cm−1 vibration in the SERS spectra also confirmed the presence of chemically adsorbed CO2. Other products of CO2 reduction in BMI.BF4, besides CO, were identified, including BMI carbene and the BMI‐CO2 adduct. The SERS results also suggest that the presence of a thin film of Cu2O on the copper surface anticipates the reduction of CO2 to CO, an important component of syngas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号