首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The specific heat of [NH2(CH3)2]2ZnCl4 was measured calorimetrically in the temperature region 80–300 K. As the temperature T decreases, the C p (T) dependence indicates a phase transition sequence, with the phase transition at T6=151 K observed for the first time. The thermodynamic characteristics of the crystal were refined. The transformation occurring at T2=298.3 K is shown to be an incommensurate-commensurate phase transition.  相似文献   

3.
Absorption spectra of the Q-branch of the ν1 + ν3 vibrational–rotational band of uranium hexafluoride (UF6) recorded in a range of 1290.0–1292.5 cm–1 using a laser spectrometer based on a quantum cascade laser have been studied. The spectra of samples with a natural isotopic composition (0.7% U235), an enriched sample (90% U235), and their gas mixtures (2, 5, and 20% U235) in a pressure range of 10–70 Torr at a temperature of T = 296 K have been analyzed. The experiments have revealed a highly reproducible fine structure of the recorded spectra. Periodic singularities in the fine-structure spectra have been interpreted as a manifestation of hot band transitions near the Q-branch. Anharmonicity constants X 21, X 31, and X 32 and their combinations X i1 + X i3 (i = 4, 5, 6) have been determined. The characteristic features in the fine-structure spectra and the initial spectrum have been used to determine the isotopic composition of enriched UF6 samples.  相似文献   

4.
The formation of an intermediate phase in SrFe12O19/La0.9Ca0.1MnO3 composites was demonstrated for the first time using only Mössbauer spectroscopy. The SrFe12O19/La0.9Ca0.1MnO3 composite was prepared by the two-stage (sol–gel and hydrothermal) synthesis with varying initial conditions. The X-ray diffraction studies showed that the composite consisted of two phases: well-formed structures of manganite La0.9Ca0.1MnO3 and hexagonal ferrite SrFe12O19. It was found that nanocrystalline La0.9Ca0.1MnO3 particles with size d ? 150 nm formed in the composites at the surface of plate-like SrFe12O19 crystallites. The Mössbauer studies showed that the composite contained additional (intermediate) phase La0.9Ca0.1Mn(Fe)O3 that formed at the interface between SrFe12O19 and La0.9Ca0.1MnO3 phases. The intermediate phase concentration increased with the molar content of La0.9Ca0.1MnO3; in this case, the fraction of the surface of SrFe12O19 crystallites coated with La0.9Ca0.1MnO3 increased, which led to the increase in the total area of the interface surface and the intermediate phase concentration.  相似文献   

5.
A crystal of the Cs5H3(SO4)4 · xH2O (x ≈ 0.5) (PCHS) compound, which belongs to the family of proton conductors with a complex system of hydrogen bonds, is investigated by 2H NMR spectroscopy. The temperature and orientation dependences of the 2H NMR spectra are measured and analyzed. It is established that, upon transition to the glassy phase at the temperature T g = 260 K, the parameters characterizing the proton exchange between positions in hydrogen bonds remain unchanged to within the limits of experimental error. The protons in the two-dimensional network of hydrogen bonds in the (001) plane are dynamically disordered over possible positions down to temperatures considerably lower than the glass transition point T g . However, water molecules are fixed at particular structural positions in the phase transition range. In PCHS crystals with a nonstoichiometric water content, this circumstance can be responsible for the frustration that leads to the formation of the glassy state.  相似文献   

6.
7.
The structural and the thermodynamic properties of potassium nitrate KNO3 and its composites with nanosized aluminum oxide Al2O3 have been studied by differential scanning calorimetry. It has been found that an amorphous phase forms in composites (1–x)KNO3–xAl2O3. The thermal effect corresponding to this phase has been observed at 316°C. It has been found that the phase transition heats of potassium nitrate decreased as the aluminum oxide fraction increased.  相似文献   

8.
The synthesis procedure of the Li3Fe2(PO4)3?+?Fe2O3 composite is presented. The monoclinic (A type) and hematite phases were detected by X-ray diffraction after the synthesis of the composite. The structural α–β (at a temperature of 460 K) and β–γ (at a temperature of 523 K) phase transitions in the composite were indicated by the anomalies of the electrical conductivity, dielectric permittivity, and changes of activation energies of conductivity. Two phase transitions have been detected in the Li3Fe2(PO4)3?+?Fe2O3 composite by 57Fe Mössbauer spectroscopy: the phase transition in Li3Fe2(PO4)3 from the paramagnetic to antiferromagnetic phase at temperature T N?=?29.5 K and the Morin phase transition in Fe2O3 at temperature T M?=?235 K.  相似文献   

9.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

10.
High field electrical switching on blown films of MoO3(60%)–P2O5(40%), MoO3(50%)–WO3(10%)–P2O5(40%), and MoO3(45%)–WO3(15%)–P2O5(40%) having different thicknesses was studied and compared. Switching was observed using two terminal samples. S-type current–voltage characteristic (current-controlled negative resistance—CCNR) with memory was observed in molybdenum–phosphate glasses, but N-type characteristic (voltage-controlled negative resistance—VCNR) with threshold in tungsten–molybdenum–phosphate glasses was observed. The important observation was that with the addition of WO3 to binary MoO3–P2O5 led to a change of IV characteristic from CCNR with memory to VCNR with threshold. The measurements of density and molar volume showed linear relation between MoO3 content and density which decreased with the increase of MoO3 content. The samples’ thickness had no significant effect on threshold voltage. The attained results also indicated that the electrode material had no effect on switching property of devices. The switching behavior of the devices did not show any dependence on the polarity of the applied voltage. In terms of the effect of heat on the switching behavior of molybdenum–phosphate glasses, it was found that threshold voltage decreases with increasing of temperature. Finally, the switching phenomenon was explained by thermal (formation of crystalline filaments) and electronic models.  相似文献   

11.
The refraction R of the diglycine nitrate (DGN) crystal, (NH2CH2COOH)2 · HNO3, in the para-and ferroelectric phases has been calculated in the model of noninteracting diatomic chemical bonds of the elementary unit cell of the crystal on the basis of the longitudinal and transversal polarizabilities of these bonds. The calculated magnitudes of the principal refractive indices n p , n m , and n g and the orientations of the optical indicatrix of the crystal agree satisfactorily with experimentally observed values. Introducing the coefficient of Lorenz-Lorentz interaction x into the corresponding formula permits better agreement of the calculated and experimental refractive indices of DGN crystal to be obtained. The temperature changes of these x coefficients upon the ferroelectric phase transition in the DGN crystal have been analyzed.  相似文献   

12.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

13.
A model of the structure of the piezoelectric ceramic lead zirconate–titanate PbZr1–x Ti x O3 (PZT) is proposed. The model is based on ab initio calculations for possible local structures using the density functional theory (DFT) approach. A comparison of the calculated neutron diffraction data for local structures and the measured diffraction data obtained for actual powder samples shows there is a partially established long-range crystalline order in the material, in the sublattice of Zr and Ti cations.  相似文献   

14.
The reflection R(?ω), transmission t(?ω), absorption α(?ω), and refraction n(?ω) spectra of polycrystalline In2O3–SrO samples with low optical transparency, which contain In2O3 and In2SrO4 crystallites with In4SrO6 + δ interlayers, are examined. In the region of small ?ω values, the reflection coefficient decreases as the resistance of samples saturated with oxygen increases. Spectral dependences n(?ω) and α(?ω) are calculated using the classical electrodynamics relations. The results are compared to the data based on the t(?ω) spectra. The calculated absorption spectra are interpreted within the model with an overlap of tails of the density of states in the valence band and in the conduction band. A “negative” gap E gn in the density of states with a width from–0.12 to–0.47 eV is formed in highly disordered samples in this model. It is demonstrated that the high density of defects and the band of deep acceptor states of strontium in the major matrix In2O3 phase are crucial to tailing of the absorption edge and its shift toward lower energies. The direct gap E gd = 1.3 eV corresponding to the In2SrO4 phase is determined. The energy band diagram and the contribution of tunneling, which reduces the threshold energy for interband optical transitions, are discussed.  相似文献   

15.
A new model is proposed for a local transition in a Jahn-Teller impurity center in a crystal with a ferroelastic (ferroelectric) phase transition. This model is based on direct interaction of the order parameter of the phase transition in the matrix with the Jahn-Teller impurity degrees of freedom. It is shown that, under these conditions, the order parameter field can induce lifting of degeneracy of the electronic states active in the Jahn-Teller effect, which is accompanied by a transition from the Jahn-Teller effect to the pseudo-Jahn-Teller effect with its subsequent suppression. As a result, a decrease in temperature gives rise to a structural local transition in the region of the low-symmetry ferroelastic (ferroelectric) matrix phase from the many-well local adiabatic to a single-well potential. The model proposed allows interpretation of experimental data obtained in an EPR study of the molecular impurity ion MnO 4 2? in the K3Na(CrO4)2 ferroelastic.  相似文献   

16.
The structural characteristics, valence states, and distribution of cerium ions between the components in In2O3–CeO2 and SnO2–CeO2 nanocomposites fabricated using the impregnation method were studied. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) were used to show that, during impregnation, cerium ions are not included into In2O3 crystals and are disposed only on their surface in the form of nano-sized crystallites or amorphous clusters. On the other side, under the contact of CeO2 clusters with a surface of SnO2 matrix crystals, cerium ions penetrate into the surface layer of these crystals. In contrast to an In2O3–CeO2 system, where the addition of CeO2 does not affect the conduction activation energy, where cerium oxide is added to SnO2, the observed increase in the resistance of a SnO2–CeO2 composite is accompanied by a sufficient increase in activation energy. These data and the XPS spectra confirm the modification of the surface layers of conductive SnO2 crystals as, a result of the penetration of cerium ions into these layers.  相似文献   

17.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

18.
The reflection and transmission spectra of ceramic samples of SrTiO3–SrMg1/3Nb2/3O3 solid solutions have been measured in the frequency range of 5–5000 cm–1 and in the temperature range of 5–370 K. Based on these spectra, the spectra of the real ε'(ν) and imaginary ε''(ν) parts of the complex permittivity ε*(ν) have been simulated by the method of dispersion analysis. It has been found that the temperature evolution of the dielectric constant is entirely determined by the behavior of the soft mode.  相似文献   

19.
The spectra of reflection and magnetoreflection of light from the crystalline insulator α-Al2O3 in the IR spectral region (λ = 2.5–25 μm) are investigated. Some features in the magnetoreflection spectra in the wavelength range corresponding to the excitation of optical phonon modes in α-Al2O3 are found. A significant increase in magnetoreflection is observed near these wavelengths. The amplitude and shape of the magnetore-flection spectra for the p and s polarizations of probe light are determined. It is shown that the optical and magneto-optical properties of α-Al2O3 in the IR region can be described on the basis of the theory of polaron excitation. A satisfactory correlation between the theoretical and experimental spectra is obtained, which indicates that polarons play an important role in determining the optical characteristics of nonmagnetic insulators and make the dominant contribution to the magnetoreflection spectra.  相似文献   

20.
Crystals of [Rb0.7(NH4)0.3]2SO4 solid solutions are studied using x-ray diffractometry in the temperature range 4.2–300 K. No anomalies are revealed in the temperature dependences of the lattice parameters and the volume of the host unit cell. A series of superstructure reflections observed along the basis axes corresponds to the guest lattice formed in the matrix of the host structure. From analyzing the axial ratio of these structures and their temperature dependences, it is concluded that the structure of the crystal has the form of an incommensurate composite. The guest structure of the composite at room temperature can be considered a set of chains that are not correlated along the b direction. In the plane perpendicular to the chain axes, these chains form a regular framework that is also incommensurate to the host lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号