首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin silicon nano-wires (SiNWs) with a diameter of 10–20 nm were fabricated by a simple thermal evaporation of silicon wafer at 1523 K. The gold produced by an electrochemical method was covered on the wafer surface as catalyst. It was found that the SiNWs are amorphous and its Raman peak shifted down maybe due to the effect of laser heating and quantum confinement. Finally, a temperature gradient growth model is suggested to explain the growth direction of SiNWs.  相似文献   

2.
Silicon nanowires (SiNWs) have successfully been synthesized by carbothermal evaporation method. By ramping-up the furnace system at 20 °C min−1 to 1100 °C for 6 h, the vertically aligned coexist with crooked SiNWs were achieved on the silicon substrate located at 12 cm from source material. The processing parameters such as temperature, heating rate, duration, substrate position and location are very important to produce SiNWs. Morphology and chemical composition of deposited products were investigated by field-emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray analysis (EDX). The existence of small sphere silicon oxide capped nanowires suggested that the formation of SiNWs was governed by oxide-assisted growth (OAG) mechanism.  相似文献   

3.
The growth mechanism for synthesizing large scales of one-dimensional silicon nano-structures (silicon nano-wires (SiNWs) or silicon oxide nano-wires (SiO2-NWs)) by a simple evaporation of sulfur-contained powders on silicon wafer is discussed. A novel sulfide-assisted mechanism referring to oxygen-assisted mechanism is proposed. Amongst this simple method, sulfide or pure sulfur can both assist the formation of SiNWs. The growth is fast and some SiNWs are easily oxidized to be amorphous structure of SiO2-NWs under the low-vacuum system. The simple method suggests a useful route to achieve plenty of one-dimensional silicon nano-structures for further research.  相似文献   

4.
Crystalline AusSi2/Si heterojunetion nanowires (AusSi2/SiNWs) are obtained by thermal evaporating SiO pow- ders on thick gold-coated silicon substrates in a low vacuum system. Structure analysis of the produced AusSh/Si heterojunetions is performed by employing a transmission electron microscope (TEM) and a selected area electric diffraetometer. The chemical compositions axe studied by a energy-dispersive x-ray spectroscope attached to the TEM. A two-step growth model is proposed to describe the formation of the AusSi2/SiNWs. During the first step, crystalline SiNWs are formed via a growth mechanism combining the oxide-assisted growth process with the vapour-liquid-solid model at relatively high temperature. In the second step, the temperature decreases and one segment of the preformed SiNWs reacts with the remnant Au to form single crystalline AusSi2 nanowires by a solid-liquid-solid process. The present work should be useful for the future synthesis and research of high-quality gold silicide nanowires and microelectronic devices based on the nanowires.  相似文献   

5.
The lithiation and delithiation process of silicon nanowire arrays (SiNWs) on silicon substrates has been studied with high-resolution electron microscopy. The composition of lithiated SiNWs was revealed, consisting of the unreacted crystalline silicon core and the reacted amorphous Li–Si shell. In particular, the Li–Si shell was comprised of a mixture of amorphous silicon oxide and crystalline silicon, leading to hindrance during Li–Si alloying/dealloying upon cycling.  相似文献   

6.
Preparation and surface modification of silicon nanowires (SiNWs) grown by the metal catalyzed solution method under normal conditions (room temperature, 1 atm) had been studied in this paper. Firstly, SiNWs using a simple solution method via electroless metal deposition (EMD) of silver under room temperature, standard pressure had been prepared. The influence of the growth parameters such as solution concentration, etching time on the SiNWs formation had been studied. Secondly, the surface modification of SiNWs with platinum and copper had been investigated. The results indicated that the SiNWs modified with Pt and Cu showed different surface morphologies. Pt modification on SiNWs presented in the form of nanoparticles, whereas Cu modification in the form of membrane. Therefore, the Pt modified SiNWs have more vast surface-to-bulk ratio than the unmodified ones, and SiNWs modified with copper nanoparticles will lead to the smaller surface-to-bulk ratio. So the platinum-modified SiNWs have a promising application in sensors’ field.  相似文献   

7.
In this paper, the selective growth of silicon nanowires (SiNWs) was studied. With the aid of photolithography, the vertically aligned silicon nanowires were selectively formed on the patterned substrates via an electroless metal deposition (EMD) method under normal conditions (room temperature, 1 atm). Low-pressure chemical vapor deposition (LPCVD) silicon nitride was used as the masking layer for SiNWs preparation. The scanning electron microscope was used to examine the etching results. Both the patterned and the unpatterned silicon substrates were used for study. The results indicated that the growth rates of the SiNWs upon the patterned and the unpatterned substrates are different. For the patterned substrates, the growth rate of SiNWs is dependent upon the pattern shape. The influence of length-to-width ratio for the rectangular-shaped patterns was studied. It is concluded that by designing the proper length-to-width ratio, the nanowires with different lengths can be fabricated simultaneously on the same substrate.  相似文献   

8.
Silicon nanowires (SiNWs) were prepared by the electrochemical reduction of solid Ni/SiO2 blocks in molten CaCl2 at 1173 K. The SiNWs have diameter distributions ranging from 80 to 350 nm, and the nickel–silicon droplets are found on the tips of the nanowires. The growth mechanism of SiNWs was investigated, which confirmed that the nano-sized nickel–silicon droplets formed at the Ni/SiO2/CaCl2 three-phase interline. The droplets lead to the oriented growth of SiNWs. Formation of nano-sized nickel–silicon droplets suggests that this method could be a potential way to produce nano-sized metal silicides.  相似文献   

9.
The un-doped and boron-doped silicon nanowires (SiNWs) were grown via vapor–liquid–solid (VLS) mechanism by low pressure chemical deposition (LPCVD). The diameters of un-doped and boron-doped SiNWs varied from 18.5 to 75.3 nm and 26.6 to 66.1 nm, respectively. The critical growth temperature of boron-doped SiNWs is 10°C lower than that of un-doped ones and the diameters of the boron-doped SiNWs is always larger than that of the un-doped ones under different growth temperatures. This is because that the introduction of diborane enhanced the dissociation of SiH4 which determines the growth process of SiNW. A growth process of silicon nanowire is proposed to describe the influence of B2H6.  相似文献   

10.
Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field.  相似文献   

11.
Silicon nano-wires (SiNWs) with diameter of 30 nm and length of tens of micrometers on silicon wafers were synthesized by a novel thermal evaporation of zinc sulfide. After thermal evaporation at 1080°C for 1 h, crystalline SiNWs were produced. It was found that the tip of SiNWs contained sulfur, while the other places of SiNWs did not. It is considered that the decomposition of SiS resulted in the formation of SiNWs. On the basis of the facts, a sulfide-assisted growth model of SiNWs was suggested.  相似文献   

12.
Single-walled carbon nanotubes (SWNTs) have been grown on silicon nanowires (SiNWs) by ethanol chemical vapor deposition (CVD) with Co catalysts. We have found that a surface SiOx layer of SiNWs is necessary for the formation of active Co catalysts. In fact, the yield of the SWNT/SiNW heterojunctions gradually decreases as the thickness of the surface SiOx layer decreases. Since thin SiNWs are transparent to an electron beam, the Co nanoparticles on SiNWs can be easily observed as well as SWNTs by TEM. Therefore, the relationship between the diameters of each SWNT and its catalyst nanoparticle has been investigated. The diameters of SWNTs are equal to or slightly smaller than those of the catalyst nanoparticles.  相似文献   

13.
Although the aqueous electroless etching (AEE) method has received significant attention for the fabrication of silicon nanowires (SiNWs) due to its simplicity and effectiveness, SiNWs grown via the AEE method have a drawback in that their surface roughness is considerably high. Thus, we fabricated surface-modified pn + junction SiNWs grown by AEE, wherein the surface roughness was reduced by a sequential processes of oxide growth using the rapid thermal oxidation (RTO) cycling process and oxide removal with a hydrofluoric acid solution. High-resolution transmission electron microscopy analysis confirmed that the surface roughness of the modified SiNWs was significantly decreased compared with that of the as-fabricated SiNWs. After RTO treatment, the wettability of the SiNWs had dramatically changed from superhydrophilic to superhydrophobic, which can be attributed to the formation of siloxane groups on the native oxide/SiNW surfaces and the effect of the nanoscale structure. Due to the enhancement in surface carrier mobility, the current density of the surface-modified pn + junction SiNWs was approximately 6.3-fold greater than that of the as-fabricated sample at a forward bias of 4 V. Meanwhile, the photocurrent density of the surface-modified pn + junction SiNWs was considerably decreased as a result of the decreases in the light absorption area, light absorption volume, and light scattering.  相似文献   

14.
The effect of orientation on the frequency of the radial breathing mode (RBM) of silicon nanowires (SiNWs) is investigated by means of the first principles Density Functional Theory approach through the generalized gradient approximation. We compare the RBM frequency of SiNWs orientated in three different directions, [0 0 1], [1 1 1], and [1 1 0]. The RBM is observed by the calculation of the phonon band structure and density of states of the SiNWs through the supercell finite displacement method. Results show that the SiNWs are stable in the three chosen directions since there are no negative frequencies in their phonon band structure and density of states. A clear dependence of the RBM frequency with respect to the growth direction of the nanowires and the phonon confinement was observed as the RBM frequency decreased with an inverse power law in each nanowire direction, with the fitting parameters dependent on the growth direction. These results are important since they could be used as a fingerprint to identify them within different spectroscopy techniques such as Raman.  相似文献   

15.
Single-crystal, Al-catalyzed Si nanowires (SiNWs) were grown under atmospheric pressure using the dimpled feature of Al metal that remained after the removal of an anodic aluminum oxide (AAO) template directly formed on a Si substrate. During the H2 preannealing prior to growth, the dimpled surface morphology of the remaining Al changed as the Al formed agglomerations with each other and subsequently formed Al-Si alloy islands on the silicon surface. Silicon nanowires were found to only grow on these islands, resulting in the final hedgehog-shaped morphology. The amount of Al agglomeration which controlled the overall size of the alloy islands was determined by varying the H2/Ar flow ratio during preannealing. High-density growth of SiNWs was observed at a lower ratio of the H2/Ar flow rates.  相似文献   

16.
We review our recent results on the growth and characterization of silicon nanowires (SiNWs). Vapour-phase deposition techniques are considered, including chemical vapour deposition (CVD), plasma-enhanced chemical vapour deposition (PECVD), high-temperature annealing, and thermal evaporation. We present complementary approaches to SiNW production. We investigate the low-temperature (down to 300 °C) selective nucleation of SiNWs by Au-catalysed CVD and PECVD. Bulk production of SiNWs is obtained by thermal-vapour deposition from Si/SiO powders in a high-temperature furnace. In this case, SiNWs grow either by condensing on Au catalyst films, or by self-condensation of the vapour in a lower-temperature region of the furnace. Finally, we also achieve controlled growth by thermolysis of nanopatterned, multi-layered Si/Au thin-film precursors. The as-produced wires are compared in terms of yield, structural quality, and optical properties. Raman and photoluminescence spectra of SiNWs are discussed. PACS 81.15.Gh; 73.21.-b; 73.21.Hb; 71.20.Mq; 78.30.-j  相似文献   

17.
Silicon nanowires (SiNWs) have been grown on crystalline silicon (Si), indium tin oxide (ITO) and stainless steel (SS) substrates using a gold catalyst coating with a thickness of 200 nm via pulsed plasma-enhanced chemical vapor deposition (PPECVD). Their morphological, mineralogical and surface characteristics have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman analysis. SiNWs growth is accompanied by oxidation, thus yielding partially (SiO x ) and fully oxidized (SiO2) Si sheaths. The mean diameters of these SiNWs range from 140 to 185 nm. Si with (111) and (220) planes exists in SiNWs grown on all three substrates while Si with a (311) plane is detected only for Si and ITO substrates. Computational simulation using density functional theory (DFT) has also been conducted to supplement the experimental Raman analyses for crystalline Si and SiO2. XPS results reveal that ca. 30 % of the SiNWs have been oxidized for all substrates. The results presented in this paper can be used to aid selection of appropriate substrates for SiNW growth, depending on specific applications.  相似文献   

18.
A Pd-Ni nanoparticle modified silicon-based anode is fabricated and the possibility of using it for the direct alkaline fuel cell of carbohydrates has been investigated by electrochemical method. Upright and porous ordered silicon nanowires (SiNWs) arrays are prepared by wet etching. The Pd-Ni nanoparticles are covered to the SiNWs uniformly by chemical deposited successively. Using six kinds of common carbohydrate, including glucose, fructose, maltose, lactose, sucrose, and starch, as testing subjects, the performance of electrocatalytic oxidation is studied. Experiment results show that the electrochemically active surface area of Pd-Ni/SiNWs electrode electrochemically active surface area is 53.482 cm2, and higher electrocatalytic activity and stability is displayed for the direct oxidation of glucose, fructose, maltose, and lactose. Firstly, the Pd-Ni/SiNWs electrode has better electrochemical performance for carbohydrates and is promising for applications in direct alkaline fuel. Secondly, more kinds of carbohydrates might potentially use as energy source for direct alkaline fuel.  相似文献   

19.
C.S. Guo  X.B. Yang  R.Q. Zhang   《Solid State Communications》2009,149(39-40):1666-1669
Based on density functional theoretical calculations, we present remarkable differences in the electronic properties of 110 silicon nanowires (SiNWs) with symmetric and canted dihydrides (SiH2) on (100) facets which are, however, energetically very competitive. It is found that surface terminations with the canted SiH2 result in dramatic widening of the band gap, with an increment as large as 20%. The valence band maximum diffuses in the surface layers, which enhances the electronic activity of surface defects. The revealed significant effects of the surface multistates could be important for the surface functionization of SiNWs.  相似文献   

20.
A small sandwiched transition region between the Au catalysis droplet and silicon nanowires (SiNWs) is proposed to investigate the diameter-dependent orientation of SiNWs grown by the vapor-liquid-solid (VLS) mechanism. Atomic-scale calculation shows that for a given transition region width, there is always a critical diameter. Below the critical value, surface energy dominates and the 〈1 1 0〉 orientation is preferred, whereas at larger diameters, the interphase energy dominates and SiNWs grow along the 〈1 1 1〉 direction. The variability of the critical diameter is also included in our model by adjusting the transition region width. The theoretical results are in agreement with those from experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号