首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thin polycrystalline films of permalloy (Ni79Fe21) and permendur (Co50Fe50) have been irradiated with Xe-ions to fluences of 1014–1016 ions/cm2. Ion-induced structural and magnetic modifications have been measured by grazing angle X-ray diffraction, Rutherford backscattering and magneto-optical Kerr effect. In the case of permendur, the Xe-ion implantation first reduced the coercivity, because of stress relaxation, while higher ion fluences increased the coercivity due to pinning centers generated in the film. The ion irradiation aligned the in-plane easy axis of the magnetization along the direction of the external magnetic field during implantation. Phase shifts obtained from magnetic force microscopy confirmed these modifications. The effects of Xe-ion irradiation in permalloy films are much weaker and underline the importance of magnetostriction in the variation of the coercivity and anisotropy.  相似文献   

2.
As-quenched and stress field annealed FINEMET ribbons were irradiated with 246?MeV energy Kr, 470?MeV energy Xe and 720?MeV energy Bi ions and investigated by 57Fe M?ssbauer spectroscopy and XRD methods. The change in relative areas of the 2nd and 5th lines in the M?ssbauer spectra indicated significant changes in the magnetic anisotropy of both as-quenched and stress annealed FINEMET due to irradiation with swift heavy ions. Differences were observed between the effect of irradiations with various ions having different energy and fluence. The effect of irradiation on the magnetic orientation in FINEMET was explained in terms of radiation induced defects. The swift heavy ion irradiation can be applied to produce FINEMET ribbons with more favorable soft magnetic properties for technological applications.  相似文献   

3.
Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 × 1016 ions/cm2. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Mössbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp → fcc phase transition has been observed under the influence of Xe-ion implantation. For 1016 Xe-ions/cm2, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.  相似文献   

4.
An overview is provided on our recent work that applies 57Fe M?ssbauer spectroscopy to specific problems in nanomagnetism. 57Fe conversion electron M?ssbauer spectroscopy (CEMS) in conjunction with the 57Fe probe layer technique as well as 57Fe nuclear resonant scattering (NRS) were employed for the study of various nanoscale layered systems: (i) metastable fct-Fe; a strongly enhanced hyperfine magnetic field Bhf of ~39?T at 25?K was observed in ultrahigh vacuum (UHV) on uncoated three-monolayers thick epitaxial face-centered tetragonal (fct) 57Fe(110) ultrathin films grown by molecular-beam epitaxy (MBE) on vicinal Pd(110) substrates; this indicates the presence of enhanced Fe local moments, μFe, as predicted theoretically; (ii) Fe spin structure; by applying magnetic fields, the Fe spin structure during magnetization reversal in layered (Sm–Co)/Fe exchange spring magnets and in exchange-biased Fe/MnF2 bilayers was proven to be non-collinear and depth-dependent; (iii) ferromagnet/semiconductor interfaces for electrical spin injection; CEMS was used as a diagnostic tool for the investigation of magnetism at the buried interface of Fe electrical contacts on the clean surface of GaAs(001) and GaAs(001)-based spin light-emitting diodes (spin LED) with in-plane or out-of-plane Fe spin orientation; the measured rather large average hyperfine field of ~27?T at 295?K and the distribution of hyperfine magnetic fields, P(Bhf), provide evidence for the absence of magnetically “dead” layers and the existence of relatively large Fe moments (μFe ~ 1.8?μB) at the ferromagnet/semiconductor interface. - Finally, a short outlook is given for potential applications of M?ssbauer spectroscopy on topical subjects of nanomagnetism/spintronics.  相似文献   

5.
The magnetic properties of three samples of Fe3Al—as melted and annealed, high energy ball milled and milled sample followed by annealing—have been studied using a combination of X-ray diffraction, Transmission electron microscopy, room temperature 57Fe M?ssbauer spectroscopy and DC magnetization. The different magnetic contributions in the M?ssbauer spectra have been explained in terms of the nearest neighbour Al configuration of Fe. These correlate well to the bulk magnetic properties determined by DC magnetization. High temperature DC magnetization studies show the presence of antiferromagnetic contributions from grain boundaries in the ball milled, nano sized sample.  相似文献   

6.
Langmuir-Blodgett (LB) films of octadecanoyl hydroxamic acid (C18N) complexed with Fe3?+? ions have been prepared at various subphase pH values. The LB films consisting of different number of layers were investigated by 57Fe conversion electron M?ssbauer spectroscopy (CEM) at room temperature. The CEM detector contained a piece of α-iron, enriched with 57Fe, using as an internal standard. The M?ssbauer pattern of the C18N/Fe LB films is a doublet with parameters δ = 0.35?mm/s and Δ = 0.74?mm/s. A gradual increase of the relative occurrence of the doublet compared to the sextet of the internal standard was observed with the increasing number of layers, indicating the nearly uniform distribution of Fe among the LB layers.  相似文献   

7.
FexNi100−x thin films were produced by galvanostatic electrodeposition on Si (1 0 0), nominal thickness 2800 nm, and x ranging 7-20. The crystalline structure of the sample was determined by X-ray diffraction (XRD). The magnetic properties were investigated by vibration sample magnetometry (VSM) and room temperature 57Fe Mössbauer spectroscopy. Conversion Electron Mössbauer spectroscopy (CEMS) in both film surfaces for the thick self-supported films showed that the magnetic moment direction is in the plane and conventional transmission (MS) that the directions are out of the plane films. The results were interpreted assuming a three-layer model where the external layer has in-plane magnetization and the internal one, out of plane magnetization.  相似文献   

8.
A new 1D coordination polymer [Fe(βAlatrz)3](ClO4)2 ? H2O (1) with a neutral bidentate ligand, βAlatrz = 4H-1,2,4-triazol-4-yl-propionate, was prepared and its magnetic behavior was investigated by temperature dependent magnetic susceptibility measurements and 57Fe M?ssbauer spectroscopy. The temperature dependence of the high-spin molar fraction derived from 57Fe M?ssbauer spectroscopy recorded on cooling below room temperature reveals a gradual single step transition with T1/2 = 173?K between high-spin and low-spin states in agreement with magnetic susceptibility measurements. 1 presents striking reversible thermochromism from white, at room temperature, to pink on quench cooling to liquid nitrogen. The phase transition is of first order as deduced from differential scanning calorimetry, with T1/2 matching the one determined by both SQUID and 57Fe M?ssbauer spectroscopy. A brief assessment has been made among closely related 1D coordination polymers to perceive the effect of ligand spacer length and anion effect on the spin crossover behavior of these new materials.  相似文献   

9.
The dilute magnetic properties of SrSn1?xFexO3 (x = 0.01 ? 0.15) prepared by sol-gel and thermal decomposition methods were investigated by 57Fe Mössbauer spectrometry, magnetometry, and X-ray diffractometry. It was found that SrSnO3 doped with 2–8 % Fe show weak ferromagnetism although only paramagnetic doublets are observed in 57Fe Mössbauer spectra at room temperature (RT), whereas SrSnO3 doped with 10–15 % Fe show relatively strong ferromagnetism, and the sextets are additionally observed in the 57Fe Mössbauer spectra at RT. The weak ferromagnetism by doping 2–8 % Fe is considered to be caused by the induced magnetic defects, and the ferromagnetism by doping 10–15 % Fe are considered mainly due to the magnetic coupling between dilute Fe 3+ partially substituted at Sn 4+ sites in the orthorhombic structure of SrSnO3?δ accompanying the oxygen deficiencies. It is further remarkable that poor crystalline 8 % Fe doped SrSnO3?δ obtained by annealing at 600 °C shows relatively high saturation magnetization and low coercivity.  相似文献   

10.
Thin polycrystalline Ni films of typically 75 nm thickness evaporated on Si or SiO2 substrates were irradiated with 30-900 keV Xe-ions to fluences of 2.5 x 1013 - 4 x 1014/cm2. The magnetization of the Ni films was measured using the longitudinal Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. The Ni-film thickness and Xe-concentration profiles were determined with Rutherford backscattering spectroscopy and the lattice dilation with X-ray diffraction. The Xe-irradiations were found to induce an in-plane uniaxial magnetic anisotropy within the Ni-films. This magnetic texture was investigated in relationship to the microstructure as function of the ion energy and fluence, the sample temperature, the presence of an external magnetic field during the irradiation and the stress field produced before, during and after the implantations.Received: 30 September 2004, Published online: 14 December 2004PACS: 61.82.Bg Metals and alloys - 68.55.Ln Defects and impurities: doping, implantation, distribution, concentration, etc. - 75.30.Gw Magnetic anisotropy - 75.70.-i Magnetic properties of thin films, surfaces, and interfaces  相似文献   

11.
The solid state solutions of europium transition element oxides Eu (Fe0.8M0.2)O3 (M=Sc,Cr,Mn,Co) are synthesized. The X-ray diffraction of the compound shows that all the compounds possess the perovskite structures. Both the151Eu Mössbauer spectra and the57Fe Mössbauer spectra are measured. The hyperfine magnetic field and non-axisymmetric electric field gradient are observed in the151Eu Mössbauer spectrum. The57Fe Mössbauer spectrum shows that there are four components of hyperfine fields corresponding to four kinds of different neighbours of the Fe ion.  相似文献   

12.
SrFe12−x(Sn0.5Zn0.5)xO19 thin films with x=0−5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). The site preference and magnetic properties of Zn-Sn substituted strontium ferrite thin films were studied using 57Fe Mössbauer spectroscopy and magnetic measurements. Mössbauer spectra displayed that the Zn-Sn ions preferentially occupy the 2b and 4f2 sites. The preference for these sites is responsible for the anomalous increase in the magnetization at high Zn-Sn substitutions. X-ray diffraction (XRD) patterns and field emission scanning electron microscope (FE-SEM) micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. Vibrating sample magnetometer (VSM) was employed to probe magnetic properties of samples. The maximum saturation of magnetization and coercivity at perpendicular direction were 265 emu/g and 6.3 kOe, respectively. It was found that the complex susceptibility has linear variation with static magnetic field.  相似文献   

13.
Alloys of Fe1? x C x were produced using combinatorial sputtering methods. The composition of the films as a function of position was determined using electron microprobe techniques and the results have shown that a composition range of about 0.35?<?x?<?0.75 was obtained. X-ray diffraction methods were employed to study the structure of the thin films and showed that all portions of the films were amorphous or nanostructured. Room temperature 57Fe Mössbauer spectroscopy was utilized to study the atomic environment around the Fe atoms. Hyperfine field distributions of ferromagnetic alloys, as extracted from the Mössbauer analysis, suggested the existence of two classes of Fe sites: (1) classes of Fe sites that have primarily Fe neighbours corresponding to a high-field component in the distribution and (2) classes of Fe sites that have a greater number of C neighbours, corresponding to a low-field component. The magnetic splitting decreased as a function of increasing carbon concentration and alloys with x greater than about 0.68 were primarily paramagnetic in nature. These spectra exhibited distributions of quadrupole splitting with mean splitting in excess of 1.0?mm/s. This indicates a higher degree of local asymmetry around the Fe sites than typically seen in other Fe-metalloid systems.  相似文献   

14.
Modifications of magnetic properties upon heavy-ion irradiation have been recently investigated for films of ferromagnetic 3d-elements (Fe, Ni, Co) and alloys (permendur, permalloy), in relation to changes of their microstructure. Here we report on Xe-ion irradiation of a highly textured iron film prepared via pulsed-laser deposition on a MgO(100) single crystal and containing a thin 57Fe marker layer for magnetic orientation Mössbauer spectroscopy (MOMS). We compare the results with those obtained for a polycrystalline Fe/Si(100) sample produced by electron evaporation and premagnetized before Xe-irradiation in a 300 Oe external field. Characterization of the samples also included magneto-optical Kerr effect (MOKE), Rutherford backscattering spectroscopy (RBS) and X-ray diffraction (XRD).  相似文献   

15.
Alloys of the systems Fe–Al (mixable over the whole concentration range) and Fe–Mg (insoluble with each other) were produced by implantation of Fe ions into Al and Mg, respectively. The implantation energy was 200 keV and the ion doses ranged from 1 × 1014 to 9 × 1017cm-2The obtained implantation profiles were determined by Auger electron spectroscopy depth profiling. Maximum iron concentrations reached were up to 60 at.% for implantation into Al and 94 at.% for implantation into Mg. Phase analysis of the implanted layers was performed by conversion electron Mössbauer spectroscopy and X‐ray diffraction. For implantation into Mg, two different kinds of Mössbauer spectra were obtained: at low doses paramagnetic doublets indicating at least two different iron sites and at high doses a dominant ferromagnetic six‐line‐pattern with a small paramagnetic fraction. The X‐ray diffraction pattern concluded that in the latter case a dilated αiron lattice is formed. For implantation into Al, the Mössbauer spectra were doublet structures very similar to those obtained at amorphous Fe–Al alloys produced by rapid quenching methods. They also indicated at least two different main iron environments. For the highest implanted sample a ferromagnetic six‐line‐pattern with magnetic field values close to those of Fe3Al appeared.  相似文献   

16.
After having introduced by ion implantation 57Fe to a local concentration of 7 at% into Co6Ag94, we observed it by conversion electron Mössbauer spectroscopy in the as-prepared state and after isochronal annealing. A superferromagnetic state is inferred, which is correlated with the ordering of the magnetic moments on the Fe clusters through chain-like or dendritic Co/Fe linear structures. The magnetic moment disordering temperature lies above 473 K.  相似文献   

17.
The composition, structure, magnetic properties and stability of iron-tin thin films produced by co-evaporation with de magnetron sputtering are studied. Rutherford backscattering. Auger electron spectroscopy. X-ray diffraction and conversion electron Mössbauer spectroscopy indicate the formation of a homogeneous solid solution of tin in iron with a concentration well above the limit of equilibrium solid solubility. Measurements with a vibrating-sample magnetometer show that the films present saturation magnetization and remanence similar to those of pure iron, but a much smaller coercivity. Thermal treatment or aging lead to second-phase precipitation, which is accompanied by a growth of coercivity and remanence.  相似文献   

18.
Radio-frequency (rf) magnetic modulation has been used to generate sidebands in57Fe Mössbauer spectra of Fe0.18Ni0.82 Permalloy foils which have the smallest constant of magnetostriction among Fe?Ni alloys. Sidebands in Mössbauer spectra were observed at 30 MHz and 55 MHz. In addition to the generation of sidebands, the external rf magnetic field was found to alter the line positions of the original six line spectrum. An attempt was made to study acoustic vibrations in the foil by means of X-ray diffraction. The rf magnetic field caused changes in diffraction peak intensities and positions. It was found that X-ray diffraction can be used to study the amplitude of acoustic vibrations in Permalloy foils.  相似文献   

19.
The atomic interaction and magnetic properties of ultrathin Fe films grown on cleaved and polished MgO(1 0 0) surfaces were studied by conversion electron Mössbauer spectroscopy (CEMS). 57Fe layers were deposited as probe atoms in different layer positions in 10 ML thick Fe films. Fe layers of different thicknesses were formed on polished and cleaved substrate surfaces at RT deposition. The analysis of the spectra showed no Fe-O2- interaction in MgO/Fe interface. FeO phase formation was excluded. The Mössbauer spectrum of 5 ML 57Fe sample showed enhanced internal magnetic field at 80 K. No interdiffusion of 57Fe and 56Fe atoms was observed between the layers at room temperature.  相似文献   

20.
57Fe and119Sn Mössbauer spectroscopy as well as X-ray diffractometry were used to study Ti?Ca?Ba?Cu?O high Tc superconductors (Tc=106K) in the 4 to 300 K temperature range. X-ray diffractograms showed the dominant phase of these supercondutors to be 2-1-2-2 type. Three main iron sites were found and associalted with Fe in Cu sites in the real crystal. The dopublet with IS=0.25 mm/s and QS=0.7 mm/s at RT was attributed to the regular Cu site. No magnetic splitting was observed either in Sn or in Fe spectra taken even at 4 and 5K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号