首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 146 毫秒
1.
以66个小麦样品为试验材料,研究岭回归方法在近红外光谱定量分析中的应用。用44个小麦样品的近红外光谱数据建立测定蛋白质含量的近红外-岭回归模型,预测其余22个小麦样品的蛋白质含量。预测结果与凯氏定氮法分析结果(化学分析值)的平均相对误差为1.518%,与偏最小二乘法(PLS)预测结果进行比较,显示岭回归方法可用于近红外光谱定量分析;进一步,为了减少无关信息对定量分析模型预测能力的干扰,一种有效的方法就是进行波长信息的选择。从1297个波长点中优选出4个波长点,利用这4个波长点处的光谱信息建立近红外-岭回归模型预测22个样品的蛋白质含量,预测结果与凯氏定氮法分析结果之间的平均相对误差为1.37%,相关系数达到0.9817。结果表明岭回归方法从大量光谱信息中筛选出了最重要的波长信息、不仅简化了模型,有效的减少了光谱信息共线性的干扰,而且对特定分析选择出适用的波长对指导设计专用近红外定量分析仪器亦有实际意义。  相似文献   

2.
有监督主成分回归法在近红外光谱定量分析中的应用研究   总被引:5,自引:0,他引:5  
介绍了运用有监督主成分回归法建立近红外光谱定量分析模型的原理和方法.利用该方法先进行近红外光谱定量分析建模的波长信息选择,达到降低光谱数据维数的目的,然后建立数学模型,并用其分析预测集样品.文中以66个小麦样品为实验材料,随机选择其中40个样品建立小麦样品中蛋白质含量的近红外光谱定量分析模型,首先优选出4个波长点:4 632,4 636,5 994,5 997 cm-1,利用这4个波长点处光谱信息建立主成分回归模型预测26个样品的蛋白质含量,其结果与凯氏定氮法分析结果的相关系数为0.991,平均相对误差为1.5%.该方法从大量光谱数据中筛选出最重要的部分波长信息,实现了"少而精"的波长点选择,对建立抗共线性信息干扰的光谱定量分析模型,同时对指导专用近红外分析仪器设计中波长点的选择等方面都有一定的意义.  相似文献   

3.
傅里叶变换近红外全谱回归分析的应用研究   总被引:1,自引:0,他引:1  
文章以66个小麦样品为实验材料,其中33个为建模集,剩余33个为预测集,利用广义逆矩阵直接确定傅里叶变换近红外全谱分析回归模型中的回归系数,建立了用于蛋白质定量分析的近红外全谱回归模型。用此模型对预测集中的样品进行预测,结果与凯氏定氮法测定结果间的相关系数为r=0.979 9,平均相对误差为1.76%,表明由广义逆矩阵方法所建近红外全谱定量分析回归模型有较好的分析结果。所建模型不仅可用于对样品的实际分析,而且可根据回归模型中各个系数了解各个波长点处的光谱信息对模型预测值的贡献,从而可理解并解释傅里叶变换近红外全谱回归模型的物理学与化学意义。  相似文献   

4.
SVM回归法在近红外光谱定量分析中的应用研究   总被引:15,自引:9,他引:6  
研究了基于统计学习理论的支持向量机(SVM)回归法在近红外光谱定量分析中的应用。以66个小麦样品为实验材料,由33个小麦样品作为校正样品,采用4种不同核函数方法对小麦样品蛋白质含量与小麦样品近红外光谱进行SVM回归建模。以所建4种不同SVM回归模型对33个小麦预测样品的蛋白质含量进行了预测;不同回归模型的预测结果与凯氏定氮法确定的蛋白质含量的标准化学值间的相关系数均在0.97以上,平均绝对误差小于0.32。为了考察SVM回归校正模型的预测效果,同所建PLS回归模型的预测结果进行了比较,表明所建预测小麦样品蛋白质含量的SVM回归模型亦可通过近红外光谱进行实际样品的定量分析,且有较好的分析效果。  相似文献   

5.
介绍了运用MAXR回归法建立傅里叶变换近红外光谱定量分析模型的原理和方法。以此方法,由Matlab语言设计程序,进行近红外光谱定量分析建模的波长信息选择。并以小麦样品为实验材料,建立了蛋白质含量的近红外光谱定量分析模型,其中优选出2个和3个波长点处光谱信息建立的多元回归模型的预测结果与凯氏定氮法分析结果相关系数分别为0.977 1和0.976 5,标准差分别为0.335和0.340。MAXR回归法在进行波长信息,选择时可建立分别包含1,2,…,k个波长点信息的最优回归模型,且计算量适中,因此是一种实用的选择“最优”波长信息的回归方法。该方法不仅可少而精选择波长信息,建立抗共线性信息干扰的光谱定量分析模型,而且对于特定样品、特定待分析组分,选择最优波长信息建模分析的工作,可指导专用近红外分析仪器的设计。  相似文献   

6.
Elastic net是对最小二乘方法的一种改进,在最小二乘法的基础上增加了L1和L2惩罚,具有变量选择和模型可提高预测精度的良好性质。此研究以89个小麦样品为实验材料,通过Elastic net方法优选光谱主成分,建立近红外光谱与小麦中蛋白质含量之间的定量分析模型,考证了Elastic net优选主成分建立定量分析模型的可行性。实验中将89个小麦样品随机分成两组,60个样品做建模集,其余29个做预测集。60个样品所建模型预测29个样品的蛋白质含量,预测值和化学测量值间的相关系数(r)为0.9849,平均相对误差为2.48%。为进一步考察该方法建模的可行性和稳定性,对89个样品分别进行5次随机划分,60个样品做为建模集,29个样品做为预测集,5次建模所选光谱的主成分基本一致;同时与PCR和PLS方法作对比,结果显示5次所建模型的预测效果明显好于PCR,且与PLS方法相近。鉴于Elastic net具有变量选择的功能,且所建模型具有较好的预测效果,表明该方法是一种可行的建立化学计量学定量分析模型的方法。  相似文献   

7.
花生中蛋白质含量与分布能够显著影响花生制品品质。利用高光谱图像结合化学计量学研究可视化花生中蛋白质含量分布的可行性。从校正后的花生图像的感兴趣区域(region of interest, ROI)中提取光谱信息,通过传统化学方法测定蛋白质含量。比对了不同光谱预处理和回归算法,以二阶导数(the second derivative, 2nd-der)为最佳的光谱预处理方法,偏最小二乘法(partial least squares, PLS)为最佳的回归算法。基于预处理后的光谱和花生蛋白质的化学值,建立全波长PLS模型,全波长模型具有良好的性能(校正集相关系数为0.91,校正集标准偏差0.86;预测集相关系数为0.86,预测集标准偏差为0.69)。利用回归系数法(regression coefficient, RC)从全波长模型中选择14个特征波长,建立2nd-der-RC-PLS特征波长模型,模型性能(校正集相关系数为0.86,校正集标准偏差1.03;预测集相关系数为0.80,预测集标准偏差为0.77)与全波长模型相当。采用2nd-der-RC-PLS算法将花生高光谱图像转变成蛋白质含量分布图。成对t检验判断凯氏定氮法与高光谱法无显著性差异。结果表明结合化学计量学的高光谱成像技术为测定花生中蛋白质含量分布提供了一种高效非破坏性方法。  相似文献   

8.
近红外光谱法非破坏性测定黄豆籽粒中蛋白质、脂肪含量   总被引:28,自引:2,他引:26  
采用傅里叶近红外漫反射光谱非破坏性分析 ,能够提供完整籽粒黄豆样品成分的含量信息 ,结合偏最小二乘回归法 (PartialLeast Squares,PLS) ,以 39个不同品种的完整籽粒黄豆样品建立蛋白质和脂肪含量近红外定量分析模型 ,其中蛋白质、脂肪含量分析模型的测定系数R2 分别为 99 30 ,97 5 2 ,相对标准偏差RSD分别为 0 76 %和 1 3% ,检验集的化学值与模型预测值的相关系数r分别为 0 94 73,0 86 95。用所建模型对 2 6 4个不同品种的黄豆样品进行预测 ,并采用R error指标来估计分析结果的误差 ,其中蛋白质和脂肪模型预测的最小相对误差分别为 0 0 4 %和 2 4 6 % ,最大相对误差分别为 2 4 5 %和 4 2 5 %。该结果对育种过程中的早代筛选工作有重要意义  相似文献   

9.
应用近红外漫反射光谱对猪肉肉糜进行定性定量检测研究   总被引:5,自引:0,他引:5  
利用傅里叶变换近红外漫反射光谱结合不同数学建模算法对不同部位取样的猪肉肉糜进行定性判别建模,并建立猪肉肉糜品质指标脂肪、蛋白质和水分含量的定量检测模型。结果表明:不同部位取样猪肉肉糜判别分析PLSDA模型性能良好,最优模型校正集判别正确率为100%,预测集判别正确率为96%;比较两种方法结合,不同光谱预处理建立各品质指标的定量模型,LS-SVM模型性能优于PLSR模型,脂肪和水分含量最佳预测模型校正及预测相关系数r均高于0.9,蛋白质含量最优模型校正及预测相关系数r,RMSEC,RMSEP和RMSECV分别为0.722,0.593,1.595,1.550和1.888,模型精度需进一步提高。研究表明利用傅里叶变换近红外漫反射光谱快速判别不同部位猪肉肉糜的方法是可行的,脂肪和水分含量定量分析模型从预测精度、稳定性及适应性考虑均具一定的通用性,具有良好的市场应用前景。  相似文献   

10.
用近红外光谱法对具有不同含量水平的环己烷、正己烷、甲苯、苯的四氯化碳混合溶液中的环己烷、正己烷、甲苯进行了定量分析。对于体积百分含量在1.4%~20%之间的环己烷,校正集真值与预测值相关系数r=0.9969,RSD=0.34%;对于体积百分含量在0.04%~0.96%的正己烷,校正集真值与预测值相关系数r=0.9999,RSD=0.83%;对于含量在26.0~259.8mg·L~(-1)的甲苯,校正集真值与预测值相关系数r=0.9921,RSD=4.63%。近红外光谱可以检测到26.0mg·L~(-1)的含量水平,其预测值为25.9mg·L~(-1),相对误差为0.38%。结果表明,用近红外光谱快速、准确、同时测定不同含量水平的组份可以获得较理想的结果。  相似文献   

11.
近红外分析的一个重要基础是数学模型。不同的近红外光谱仪间由于对同一个样品响应的差异,导致一台仪器上建立的数学模型不能直接用于另一台仪器上样品的分析,需要进行模型传递。文章以两台傅里叶变换近红外光谱仪为实验研究对象,以玉米粉末样品为实验材料,采用移动窗口支持向量回归机(SVR)方法,把一台仪器上建立的近红外定量分析数学模型传递到另一台仪器上:当SVR回归的窗口大小为31个波长点,传递样品个数为15个时,模型传递效果较好,以“主机”所建蛋白含量的数学模型分析“从机”上修正后的光谱,化学测定值和近红外预测值间的相关系数提高到0.943 4,相对标准差为4.23%。表明采用移动窗口SVR法进行傅里叶变换近红外光谱仪间数学模型的传递是可行的。  相似文献   

12.
甲霜灵手性异构体比例的紫外光谱法快速测定   总被引:2,自引:0,他引:2  
Li QQ  Zhu YW  Xiong YM  Duan J  Wu LJ  Li CZ  Min SG 《光谱学与光谱分析》2010,30(12):3395-3398
用β-环糊精作为手性选择试剂,利用甲霜灵中R和S异构体与β-环糊精相互作用强弱不同而导致的紫外-可见光谱的差异来检测甲霜灵手性异构体的比例,偏最小二乘法建立甲霜灵手性异构体比例的定量模型,并对模型效果进行评价。甲霜灵-环糊精体系中甲霜灵R-异构体比例的定量模型校正集的决定系数R2为0.999 0,校正集标准偏差SEC为0.006 7,相对标准偏差RSD为0.89%;外部检验集6个样品的预测值与化学值的相关系数为0.998 5,外部检验集标准差SEP为0.008 9,相对标准偏差RSD为1.17%,本方法简单快速,具有重要的实际应用价值。  相似文献   

13.
用傅里叶变换近红外(FTNIR)光谱透射方式对新鲜苹果汁溶性固形物含量(SSC)进行了快速定量分析。实验共测定了60个果汁样品的SSC,并采集了样品的近红外光谱数据。42个样品用来建模,剩下的18个用来验证模型的性能。对实验室测得的SSC与FTNIR光谱数据进行相关性分析,以TQ 6.2.1定量分析软件中集成的主成分回归法(PCR)和偏最小二乘回归法(PLS)建立了检测模型。该研究对比了不同光谱范围内建立的检测模型的性能。根据预测平方根误差(RMSEP)和相关系数(r2)进行不同模型的预测性能,最好的新鲜苹果汁SSC预测模型的RMSEP=0.603 0Brix,r2=0.997。结果表明FT-NIR可以作为一种可靠、准确、快速的无损检测方法来评价新鲜果汁的可溶性固形物含量。  相似文献   

14.
在用太赫兹时域光谱(THz-TDS)系统测量样品THz吸收光谱的过程中,电光采样系统的采样误差往往导致测得的THz吸收频率与真实值间存在偏差。针对此问题,利用一氧化碳(CO)分子THz吸收峰的分布特性研究了对THz-TDS系统测量数据进行修正、从而提高THz吸收频率测量精度的方法。首先通过实验测得了2.0×105 Pa 压强下CO气体的一系列等间隔分布的THz吸收峰,然后把测得的吸收峰峰位与JPL标准数据库中CO分子的吸收频率进行对比,得到了实验数据的误差值。通过分析误差值随吸收频率的分布规律,发现二者间呈正线性相关,在此基础上拟合得到了实验数据的误差修正模型。用所建立的模型对实验数据进行修正后,最大误差值为3.36 GHz,较修正前降低了两个数量级,表明根据CO分子的THz吸收峰可有效修正THz-TDS系统的测量误差,从而提高THz吸收光谱的精度。本研究对材料分析识别以及分子光谱标准数据库的建立具有重要意义。  相似文献   

15.
采用激光诱导击穿光谱(LIBS)技术定量分析缅甸翡翠中Fe元素的浓度。选择Fe元素的275.57 nm光谱线作为定量分析谱线,选取Si元素的288.17 nm光谱线作为内标谱线,选取12个缅甸翡翠样品作为研究对象,以其中9个样品绘制了传统定标法和内定标法的Fe元素定标曲线,并将定标曲线用于3个检验样品的Fe含量的实际预测。实验结果表明,采用传统定标方法时,定标样品光谱强度的相对标准偏差(RSD)在1.4%~8.3%之间,所建立的Fe元素浓度含量定标曲线的拟合相关系数R2为0.979,使用该方法建立的定标曲线对3个检验样品中Fe元素含量进行测定,最大相对误差为10.6%;而采用内定标法时,定标样品光谱强度的比值(IFe/ISi)的相对标准偏差(RSD)在0.9%~5.7%之间,Fe的拟合相关系数R2达到0.989,样品中Fe元素的测定相对误差均可降低到7%以下。结果证明,利用内定标法定量分析翡翠中Fe的含量比传统定标法相对误差更小,采用LIBS技术结合内定标法更适于缅甸翡翠样品中Fe元素定量分析。  相似文献   

16.
模型传递是近红外光谱分析技术中一个关键的共性基础技术问题,通过在同一工作原理的两台仪器之间寻求可行的数学方法, 使得在一台仪器上建立的模型能够应用于另外一台仪器样品光谱响应的预测,对近红外技术的实际应用具有重要意义。以150份烤烟作为试验样品,以两台布鲁克公司MPA近红外光谱仪,一台热电公司Antaris近红外光谱仪作为研究对象,通过积分球漫反射检测技术获得光谱数据。采用一阶导数(first-order derivative,1st Der)和标准正态变量变换(standard normal variate, SNV)对光谱数据进行处理分析,计算不同仪器间光谱的残差值、残差一阶矩、残差信号概率密度和最大信噪比等参数,并采用偏最小二乘法(partial least squares, PLS)建立烤烟总糖含量数学模型,检验模型传递效果。结果表明,一阶导数具有降低残差一阶矩,将仪器偏差信号转换为标准高斯分布的优点,但同时会降低信噪比。标准正态变量变换同样可以降低一阶矩,同时可大幅度提高信噪比,但无法将仪器偏差信号转换为标准高斯分布,需要进一步的信号处理。一阶导数与SNV相结合可保留两种方法的优点,同时在一定程度上弥补每种方法单独处理的缺点,是一种可以消除以积分球漫反射作为光谱测量方式的因仪器厂家或型号不同、使用年限不同等原因所产生的噪声的处理方法,可实现傅里叶型近红外光谱仪之间的模型传递效果的明显改善。  相似文献   

17.
基于近红外漫透射光谱分析技术,设计了便携式面粉品质安全检测仪,该检测仪主要包括光谱采集模块、光源控制模块、处理与显示模块以及电源模块。其中漫透射检测附件不仅可以实现光谱补偿功能,还可以有效避免外界杂散光的干扰,设计了控制光源开关的电路,通过实验确定样品的最佳厚度。选用树莓派4B作为核心处理器,选用可充电锂电池供电,仪器可持续供电2 h,仪器大小为250 mm×170 mm×300 mm。以去除麸皮后由小麦磨成的面粉为研究对象,总共180份样品,每份样品再分三份,分别为黄色、红色和蓝色。对所有的红色样品使用波长为900~1 870 nm的近红外漫透射光谱进行光谱信息采集并记录,对所有的黄色样品进行湿度值的测量并记录,对所有的蓝色样品进行DON含量的测量并记录,三种样品需要同时进行测量。利用箱线图剔除光谱两端的噪声和一个异常样本,最终选取1 048~1 747 nm波段光谱进行建模。利用多元散射校正(MSC)、S-G卷积平滑和标准正态变换(SNV)对原始光谱数据进行预处理,分别建立了面粉湿度的偏最小二乘回归预测模型和DON含量超标与否的PCA-逻辑回归分类模型。所建湿度的最优PLSR预测模型的建模集和预测集相关系数分别为0.883和0.853,均方根误差分别为0.382%和0.286%,残差预测偏差RPD为2.5;所建DON含量超标与否的PCA-逻辑回归分类模型的预测集ROC曲线下的AUC值为0.927,混淆矩阵显示未超标样本的预测准确率为96%,超标样本的预测准确率为89%。基于PyQt5设计GUI界面,运用Python语言编写了面粉品质实时检测系统,该检测软件可以实现PLSR、PCA-逻辑回归模型的训练、保存和加载。利用外部验证集试验验证了便携式面粉多品质检测仪的精确性和稳定性。结果显示面粉湿度的外部验证集相关系数和均方根误差为0.876和0.21%,最大相对误差为2.89%。面粉DON含量超标与否的识别准确率为90%,表明该仪器可以对面粉的湿度和DON含量超标与否进行无损检测分析。  相似文献   

18.
一种简便的近红外光谱标准化方法   总被引:1,自引:1,他引:0  
针对目前近红外光谱分析中模型传递现有方法的局限性,文章介绍了一种简便的近红外光谱标准化方法,并构造了一种新的光谱标准化误差指标(spectra standard error,SSE)作为评价传递结果的指标。SSE为J2J1的比值,这里,J2表示同一样本在不同仪器上测得的谱线的距离,J1表示目标机的不同样本相对中心谱线的平均距离。文章首先对不同光谱仪所测得的吸光度谱图进行多项式卷积平滑处理以去除基线,接着采用标准归一法以实现谱图的标准化,并采用多项式卷积滤波以去除噪声。为使SSE达到最小,在处理过程中可进行波长范围和卷积窗口宽度的优化。经过上述处理后的标准化谱图可用于光谱建模分析。该方法不需要预先获得大量样本,也不需要将同一样本在不同光谱仪上测得的谱图进行比较。针对一批汽油样本的试验结果表明,借助于此方法可使SSE从1.418下降至0.167,谱图标准化效果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号