首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

To assess the sensitivity and specificity of intra-plaque hemorrhage (IPH), large lipid-rich necrotic core (LR-NC) and ulceration or cap rupture (UCR) for symptomatic carotid plaque characterization and to evaluate a new imaging score [Hemorrhage, Ulceration or cap rupture, Lipid-rich necrotic Core (HULC) score based on the sum of presence/absence of IPH, UCR and LR-NC; range 0–3] for assessment of recently symptomatic carotid plaques.

Material and methods

Twenty-seven recently symptomatic (< 8 weeks) and 36 asymptomatic patients with a carotid plaque thicker than 2 mm were prospectively imaged on a 3-T magnetic resonance (MR) system using high-resolution, multi-contrast MR sequences. Prior to analysis, all images were reviewed to assess image quality of each sequence. Sensitivity and specificity of IPH, LR-NC, UCR and HULC scores were calculated.

Results

Fifty-one patients were analyzed (26 symptomatic carotids and 67 asymptomatic carotids) after exclusion of studies with poor image quality. Sensitivity and specificity for symptomatic carotid plaque was, respectively, 46.1% and 97% for IPH, 84.6% and 73.1% for UCR and 80.7% and 76.1% for LR-NC. A HULC score of 2 or more showed a sensitivity of 73% and a specificity of 92.5%.

Conclusion

At 3 T, intra-plaque hemorrhage is the most specific criterion to characterize symptomatic carotid plaque. The HULC score offers the best compromise between sensitivity and specificity.  相似文献   

2.

Purpose

TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2 T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume.

Materials and Methods

A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements.

Results

Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved.

Conclusion

The Maxwell (sine)–Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs.  相似文献   

3.

Purpose

Quantitative imaging of the rat skin was performed using magnetic resonance imaging (MRI) at 900 MHz.

Materials and methods

A number of imaging techniques utilized for multiple contrast included magnetization transfer contrast, spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting and diffusion tensor weighting. These were used to obtain 2D slices and 3D multislice-multiecho images with high magnetic resonance contrast. These 2D and 3D imaging techniques were combined to achieve high-resolution MRI.

Results

Oil–water phantom showed distinct fat-water contrast. The dermis and epidermis, including the stratum corneum remnants, of nude rat skin were distinct due to their proton magnetic resonance as a result of proton interactions with the skin interstitial tissue. Combined details obtained from high-resolution, high-quality ex vivo skin images with different multicontrast characteristics generated better differentiation of skin layers, sublayers and significant correlation (r2=0.4927 for MRI area, r2=0.3068 for histology area; P<.0148) of MR data with co-registered histological areas of the epidermis as well as the hair follicle.

Conclusion

The multiple contrast approach provided a noninvasive ex vivo MRI visualization with semi-quantitative assessment of the major skin structures including the stratum corneum remnants, epidermis, hair, papillary dermis, reticular dermis and hypodermis.  相似文献   

4.

Objectives

Endometriosis is the ectopic localization of endometrial glands. Symptoms include a wide variety of chronic pelvic pain. Ovarian endometriosis represents the most frequent site of implantation followed by the Douglas pouch which is undepicted unless peritoneal fluid is present. Pelvic exams may be reported as normal in 40% of evaluations, although multiple nodularities are located in this region. Nowadays, laparoscopy represents the standard technique for endometriosis evaluation. However, magnetic resonance imaging (MRI) remains the best noninvasive technique for the evaluation of pelvic lesions. According to the importance of a precise preoperative diagnosis of deep infiltrative endometriosis involving the Douglas pouch, we evaluated feasibility of a 3-T system in the evaluation of this particular region.

Methods

We enrolled 19 women coming with either ultrasound or anamnestic suspicion of endometriosis. Pelvic MRI examination was performed on the 3-T system. We applied a standard exam protocol including pulse sequences [single-shot fast spin echo (FSE)] and high-resolution T2W and T1W FSE sequences with and without FS.

Results

MRI diagnosed posterior cul-de-sac obliteration in 15/19 patients. MRI findings were compared with laparoscopy, thus obtaining the following statistical values: mean sensitivity, specificity, positive predictive value and negative predictive value, respectively, of 93%, 75%, 93% and 75%. Moreover, we calculated an interobserver agreement k value of 0.72 with a substantial degree of agreement between two radiologists of a sensitivity value of 93% and specificity value of 75%.

Conclusions

Precise preoperative mapping of posterior cul-de-sac region is essential for a preoperative planning. In our work, the 3-T MRI was shown to be excellent in the evaluation of posterior cul-de-sac obliteration associated to an optimal evaluation of the uterosacral ligaments due to the higher contrast spatial resolution.  相似文献   

5.

Objective

The cause of enophthalmos as a late complication after orbital reconstruction is poorly investigated. Multislice CT (MSCT) is usually employed for its assessment, in spite of limitations regarding soft tissue depiction/imaging, as well as the implication of radiation and production of artifacts. Magnetic resonance imaging (MRI) has been shown to be a valuable alternative. The aim of this study was to establish a bony and soft tissue orbital volume calculation method based on different high-resolution MRI sequences compared to MSCT.

Materials and Methods

Thirty-seven patients were included in this prospective study investigating the origin of enophthalmos present 3–4 months after complex orbital reconstruction. Morphological and dimensional changes of the orbit, eye globes, extraocular muscles and fat content were investigated 3–4 months after surgery. To assess the site and size of bony and soft tissue changes in the traumatized orbits, we used MSCT and MR images as well as corresponding 3-D reconstructions.

Results

All enophthalmic orbits revealed a significant bony volume increase compared to the contralateral side as well as a reduced sagittal eye projection. Mean orbital volume enlargements of 1.0 cm3 lead to 0.93 mm enophthalmos (P<.05). Hardly any fatty atrophy could be depicted by the different MRI techniques.

Conclusions

For soft tissue depiction of the orbit, MRI was superior to MSCT. Particularly, proton density weighting proved to be the best sequence for soft tissue volume segmentation, allowing determination of the cause and degree of posttraumatic enophthalmos in reconstructed orbits.  相似文献   

6.

Object

To evaluate the feasibility of an optimized MRI protocol based on high field imaging at 3 T in combination with accelerated data acquisition by parallel imaging for the analysis of oropharyngeal and laryngeal function.

Materials and Methods

Fast 2D gradient echo (GRE) MRI with different spatial resolutions (1.7×2.7 and 1.1×1.5 mm2) and image update rates (4 and 10 frames per second) was employed to assess pharyngeal movements and visualize swallowing via tracking of an oral contrast bolus (blueberry juice). In a study with 10 normal volunteers, image quality was semi-quantitatively graded by three independent observers with respect to the delineation of anatomical detail and depiction of oropharynx and larynx function. Additionally, the feasibility of the technique for the visualization of pathological pre- and post-surgical oropharynx and larynx function was evaluated in a patient with inspiratory stridor.

Results

Image grading demonstrated the feasibility of dynamic MRI for the assessment of normal oropharynx and larynx anatomy and function. Superior image quality (P<.05) was found for data acquisition with four frames per second and higher spatial resolution. In the patient, dynamic MRI detected pathological hypermobility of the epiglottis resulting in airway obstruction. Additional post-surgical MRI for one clinical case revealed morphological changes of the epiglottis and improved function, i.e., absence of airway obstruction and normal swallowing.

Conclusion

Results of the volunteer study demonstrated the feasibility of dynamic MRI at 3 T for the visualization of the oropharynx and larynx function during breathing, movements of the tongue and swallowing. Future studies are necessary to evaluate its clinical value compared to existing modalities based on endoscopy or radiographic techniques.  相似文献   

7.

Background and Purpose

The present study was designed to detect the abnormalities of the cortical thickness in children with ametropic amblyopia by a computer-aided MRI technique.

Methods

Nine children with ametropic amblyopia and eight age-matched normal controls underwent MRI brain scanning that was performed on a Siemens Avanto 1.5-T scanner, and standard T1-weighted high-resolution anatomic scans of magnetization-prepared rapid gradient echo (MPRAGE) sequence were obtained. For the cortical thickness analysis, 3D MPRAGE images were processed with FreeSurfer software package (http://www.nmr.mgh.harvard.edu/freesurfer/), and the cortical thicknesses were compared between the patient group and the normal control group.

Results

The cortical thicknesses of the lingual and pericalcarine areas in the left hemisphere and of the cuneus, lateraloccipital and lingual areas in the right hemisphere in the amblyopic group were significantly thinner than those of the control group (P<.05).

Conclusion

The changes in cortical thickness of several occipital regions in amblyopic patients may be important in the diagnosis and treatment of this disease.  相似文献   

8.

Purpose

The purpose of the study was to validate the diagnostic performance of high-resolution isovolumetric magnetic resonance arthrography (MRA) for intrinsic ligament and triangular fibrocartilage complex (TFCC) tears of the wrist as compared to conventional MR imaging (MRI).

Materials and methods

Forty-eight patients with traumatic TFCC tears at arthroscopy were enrolled. All patients had underwent proton-density- and T2-weighted MRI before arthrography and three-dimensional T1 high-resolution isovolumetric examination (3D-THRIVE) MRA on a 3-T MR. We assessed the presence of scapholunate interosseous ligament (SLIL)/lunotriquetral interosseous ligament (LTIL) or TFCC tears using the arthroscopy as a gold standard.

Results

Arthroscopy revealed 37 TFCC central tears, 15 TFCC peripheral tears, 20 SLIL tears and 13 LTIL tears. Sensitivities of MRI and MRA were 70.3% and 94.6% for detection of TFCC central tears, 60.0% and 93.3% for detection of TFCC peripheral tears, 65.0% and 85.0% for SLIL tears, and 61.5% and 84.6% for LTIL tears. The specificity of the MRI was 100% for the detection of ligaments and TFCC tears. The specificities of the MRA for detection of TFCC central tears, TFCC peripheral tears, SLIL tears and LTIL tears were 100%, 97%, 96.4% and 100%, respectively.

Conclusion

Isovolumetric 3D-THRIVE wrist MRA provided better results for depiction of intrinsic ligament and TFCC tears than wrist MRI.  相似文献   

9.

Purpose

The purpose of the study was to evaluate the value of high-resolution three-dimensional fast imaging employing steady-state acquisition (3D FIESTA) imaging in the visualization of neurovascular relationship in patients with trigeminal neuralgia (TN).

Methods

Thirty-seven patients with unilateral typical TN underwent 3D FIESTA imaging. Neurovascular relationship at the trigeminal root entry zone was reviewed by an experienced neuroradiologist, who was blinded to the clinical details. The imaging results were compared with the operative findings in all patients.

Results

In 37 patients with TN, 3D FIESTA imaging identified surgically verified neurovascular contact in 35 of 36 symptomatic nerves. Based on surgical findings, the sensitivity and specificity of magnetic resonance (MR) imaging were 97.2% and 100%, respectively. Agreement between the position (medial, lateral, superior and inferior) of the compressing vessel relative to the trigeminal nerve identified by MR imaging and surgery was excellent (K=0.81; 95% confidence interval, 0.56–1.00). A statistically significant difference was found between the site of neurovascular contact and the clinical symptom related to the trigeminal branch (Fisher's Exact Test, P<.001).

Conclusions

Use of 3D FIESTA sequence enables accurate visualization of neurovascular contact in patients with TN. Anatomic relationships defined by this method can be useful in surgical planning and predicting surgical findings.  相似文献   

10.

Background

Since the advent of magnetic resonance imaging, metal artifacts have posed an important diagnostic problem in different fields of medicine. However, this has not been systematically studied in patients undergoing surgery for brain tumors.

Objective

This study was planned to assess whether metal artifacts can occur in patients undergoing brain surgery without metallic implants.

Methods

Of 40 individuals who could be included because of having a pre- and postoperative MRI and a postoperative computed tomography (CT) scan or a conventional skull X-ray for the detection of metallic artifacts, 26 patients agreed to participate in this study and gave informed consent.

Results

Twenty-six subjects, 12 males and 14 females, with an age range of 12 to 54 years, were included in the study. Four patients were found to have gross metal particles in their postoperative brain CTs and were excluded. Of the remaining 22 subjects, 7 patients (31.8%) had metallic artifacts.

Conclusion

Our study showed that simple bone drilling or chiseling during surgical manipulation of skull bones may result in separation of very tiny metal particles which can remain in the surgical site and cause artifacts in postoperative MRIs. This finding appeared to be independent of factors such as age, sex, tumor/incision site, tumor size, pathologic tumor type, total radiation dose, operation–MRI time interval and sequence of MRI.  相似文献   

11.

Background

Acute symptomatic inflammation is a main feature of multiple sclerosis but pathophysiological processes underlying total or partial recovery are poorly understood.

Objective

To characterize in vivo these processes at molecular, structural and functional levels using multimodal MR methods.

Methods

A neuroimaging 3-year follow-up (Weeks 0, 3, 11, 29, 59 and 169) was conducted on a 41-year-old woman presenting at baseline with a large acute demyelinating lesion of multiple sclerosis. Conventional magnetic resonance imaging (MRI), magnetization transfer imaging, diffusion-weighted imaging, functional MRI and magnetic resonance spectroscopy were conducted at 1.5 T.

Results

Patient presenting with subacute left hemiplegia recovered progressively (expended disability status scale 7 to 5.5). The MR exploration demonstrated structural functional and metabolic impairments at baseline. Despite restoration of the blood brain barrier integrity, high lactate levels persisted for several weeks concomitant with glial activation. Slow and progressive structural and metabolic restorations occurred from baseline to W169 (lesion volume −64%; apparent diffusion coefficient −14.7%, magnetization transfer ratio +14%, choline −51%, lipids −78%, N-acetylaspartate +77%) while functionality of the motor system recovered.

Conclusions

Multimodal MRI/MRS evidenced long-term dynamics recovery processes involving tissue repair, glial activation, recovery of neuronal function and functional systems. This may impact on customized rehabilitation strategies generally focused on the first months following the onset of symptoms.  相似文献   

12.

Purpose

Body fat distribution changes are associated with multiple alterations in metabolism. Therefore, the assessment of body fat compartments by MRI in animal models is a promising approach to obesity research. Standard T1-weighted (T1w) whole body MRI was used here to quantify different effects in the subcutaneous and visceral fat compartments in rats under treatment with an anorexiant.

Materials and methods

Twenty rats on a high caloric diet were investigated by the identical MRI protocol at baseline and after seven weeks. Ten rats received a treatment with sibutramine, 10 rats served as vehicle control group. To longitudinally assess body fat components, MRI analysis was used with two approaches: 2D slicewise graphic analysis (SGA) was compared with an automated 3D analysis algorithm (3DA).

Results

At the group level, fat volume differences showed a longitudinal increase of subcutaneous and visceral fat volumes for the control group, whereas the sibutramine group showed stable subcutaneous fat volumes and decrease in visceral fat volumes. SGA and 3DA volume determination showed significant correlations for subcutaneous fat volume (C = 0.85, p < 0.001), visceral fat volume (C = 0.87, p < 0.001), and total fat volume (C = 0.90, p < 0.001).

Conclusion

It could be demonstrated that computer-based analysis of T1w MRI could be used to longitudinally assess changes in body fat compartments in rats at the group level. In detail, it was possible to investigate the effect of sibutramine separate on the fat compartments in rats.  相似文献   

13.

Introduction

To clarify the mechanism underlying apparent diffusion coefficient (ADC) changes in regional intracranial tissue during the cardiac cycle, we investigated relationships among ADC changes, volume loading, and intracranial pressure using a hemodialyzer phantom in magnetic resonance imaging (MRI).

Materials and Methods

The hemodialyzer phantom consisted of hollow fibers (HF), the external space of HFs (ES), and a gateway of dialysis solution, filled with syrup solution and air. The high-volume and low-volume loadings were periodically applied to HFs by a to-and-fro flow pump, and syrup solution was permitted to enter or leave HFs during the volume loading cycles. ADC maps at each volume loading phase were obtained using ECG-triggered single-shot diffusion echo-planar imaging. Dynamic phase contrast MRI was also used to measure volume loading to the phantom. We compared the ADC changes, volume loading, and intracranial pressure in the phantom during the cardiac cycle.

Results

ADC changes synchronized significantly with absolute volumetric flow rate change. The maximum ADC change was higher in high-volume loading cycles than in low-volume loading cycles. Results showed that the water molecules in ES fluctuated according to the force transferred from HF to ES. ADC changes were dependent upon the volumetric flow rate during the cardiac cycle.

Conclusions

Our original phantom allowed us to clarify the mechanism underlying water fluctuations in intracranial tissues. Measurement of maximum changes in ADC is an effective method to define the transfer characteristics of the arterial pulsatile force in regional intracranial tissue.  相似文献   

14.

Purpose

To optimize the navigator-gating technique for the acquisition of high-quality three-dimensional spoiled gradient-recalled echo (3D SPGR) images of the liver during free breathing.

Materials and methods

Ten healthy volunteers underwent 3D SPGR magnetic resonance imaging of the liver using a conventional navigator-gated 3D SPGR (cNAV-3D-SPGR) sequence or an enhanced navigator-gated 3D SPGR (eNAV-3D-SPGR) sequence. No exogenous contrast agent was used. A 20-ms wait period was inserted between the 3D SPGR acquisition component and navigator component of the eNAV-3D-SPGR sequence to allow T1 recovery. Visual evaluation and calculation of the signal-to-noise ratio were performed to compare image quality between the imaging techniques.

Result

The eNAV-3D-SPGR sequence provided better noise properties than the cNAV-3D-SPGR sequence visually and quantitatively. Navigator gating with an acceptance window of 2 mm effectively inhibited respiratory motion artifacts. The widening of the window to 6 mm shortened the acquisition time but increased motion artifacts, resulting in degradation of overall image quality. Neither slice tracking nor incorporation of short breath holding successfully compensated for the widening of the window.

Conclusion

The eNAV-3D-SPGR sequence with an acceptance window of 2 mm provides high-quality 3D SPGR images of the liver.  相似文献   

15.

Objective

Chemotherapy commonly causes liver injury through sinusoidal obstructive syndrome and steatosis. Chemotherapy-induced liver injury may make it more difficult to detect metastases secondary to reduced contrast between the injured liver and metastases. The aim of this study was to determine the sensitivity of superparamagnetic iron oxide (SPIO) contrast-enhanced imaging in patients who have undergone chemotherapy prior to liver surgery.

Methods

Local ethics committee approval was obtained. Thirty-one patients with hepatic metastases completing preoperative chemotherapy were prospectively recruited. Images were reviewed independently by two blinded observers who identified and localized lesions with a four-point confidence scale. The alternative free-response receiver operator characteristic method was used to analyze the results.

Results

The sensitivity in detecting colorectal metastases following chemotherapy was 78% and 76%, respectively, for observers 1 and 2 (95% confidence interval: 71%–85% and 68%–82%). The areas under the alternative free-response receiver operator curves were 0.73 and 0.80 for observers 1 and 2, respectively.

Conclusion

Compared to previously published work on chemotherapy-naïve patients, it is clear that the sensitivity of SPIO-enhanced magnetic resonance imaging (MRI) in detecting colorectal metastases following chemotherapy is reduced. It is therefore critical that all imaging — pre-, during and postchemotherapy — is reviewed when reporting liver MRI prior to surgery.  相似文献   

16.

Purpose

Lesions close to the internal craniocervical ligaments are a common problem in patients with whiplash injuries. The aim of this study was to evaluate the morphology and visibility of these ligamentous structures with a new isotropic three-dimensional (3D) turbo-spin-echo (TSE) technique.

Materials and Methods

MR (MR) images of the cervical spine of 52 healthy subjects (27 women and 25 men; mean age=29 years; age range=18–40 years) were taken with a T2-weighted 3D TSE sequence with variable flip-angle distribution [SPACE (Sampling Perfection with Application optimized Contrasts using different flip-angle Evolution)] at 1.5 T (Magnetom Avanto, Siemens Erlangen, Germany). Two experienced musculoskeletal radiologists read the images independently on a 3D imaging and postprocessing workstation. The visibility and morphology of the alar ligaments were evaluated on a five-point scale, and inter-reader correlation was assessed with kappa statistics.

Results

Both alar ligaments were detected in all subjects. Twenty-eight (53.8%) of the alar ligaments could not be seen within one slice of the standard coronal imaging plane but could adequately be visualized in an oblique reconstruction adapted to the orientation of the ligaments on the axial slices. Inter-reader correlation for visibility on MR imaging (MRI) of the internal craniocervical ligaments was high (left+right side, kappa=0.95). Most (94%) alar ligaments presented symmetrically. In the axial plane, 60% were oriented neutral and 40% had a backward orientation. In the coronal plane, 67% were oriented caudocranially and 33% were oriented horizontally. The shape of the ligaments was parallel in half and was V-shaped in the other half. The alar ligaments had homogeneous low-signal intensity in 56% and heterogeneous low-signal intensity in 44%. The apical ligament of the dens was seen (excellent–good–moderate) in 61% (reader 1) and 52% (reader 2). The tectorial membranes and the transverse ligament of the atlas were shown (excellent–good) in all subjects.

Conclusions

MRI with acquisition of an isotropic SPACE technique allows high-resolution imaging of the craniocervical ligaments in all orientations. Reconstruction of the image data in the variable orientation of the alar ligaments allowed for excellent depiction within one slice such that partial volume artifacts that hamper image analysis can be eliminated.  相似文献   

17.
18.

Purpose

To investigate progression of cryoinjury in pigs using contrast-enhanced magnetic resonance imaging (MRI) as well as optical spectroscopy and imaging.

Methods

Cryoinjury was produced in 16 pigs in vivo and investigated using Gd-and Mn-enhanced MRI, optical imaging/spectroscopy and histology in acute and chronic setting up to 4 weeks after the injury.

Results

(1) Acute cryoinjury resulted in formation of a lesion with a severely reduced rate of sub-epicardial indocyanine green (intravascular optical flow tracer) passage. In vivo late Gd-enhanced MRI showed a ∼10 mm deep hypointense area that was surrounded by a hyperintense rim while ex vivo Mn-enhanced MRI (MEMRI) detected a homogenous hypointense zone. Histological and spectroscopic examination revealed embolic erythrocytes blockages within the cryolesion with a thin necrotic rim neighboring the normal myocardium. (2) Chronic 4-week cryoinjury was characterized by uniform Gd-enhancement, whereas MEMRI revealed reduced Mn2+enhancement. Histological examination showed replacement of the cryoinjured myocardium by scar tissue.

Conclusions

Acute cryoinjury resulted in formation of a no-reflow core embolized by erythrocytes and surrounded by a rim of necrotic tissue. Upon injury progression, the no-reflow zone shrunk and was completely replaced with scar tissue by 4 weeks after injury.  相似文献   

19.

Purpose

To investigate an effective time-resolved variable-density random undersampling scheme combined with an efficient parallel image reconstruction method for highly accelerated aortic 4D flow MR imaging with high reconstruction accuracy.

Materials and Methods

Variable-density Poisson-disk sampling (vPDS) was applied in both the phase-slice encoding plane and the temporal domain to accelerate the time-resolved 3D Cartesian acquisition of flow imaging. In order to generate an improved initial solution for the iterative self-consistent parallel imaging method (SPIRiT), a sample-selective view sharing reconstruction for time-resolved random undersampling (STIRRUP) was introduced. The performance of different undersampling and image reconstruction schemes were evaluated by retrospectively applying those to fully sampled data sets obtained from three healthy subjects and a flow phantom.

Results

Undersampling pattern based on the combination of time-resolved vPDS, the temporal sharing scheme STIRRUP, and parallel imaging SPIRiT, were able to achieve 6-fold accelerated 4D flow MRI with high accuracy using a small number of coils (N = 5). The normalized root mean square error between aorta flow waveforms obtained with the acceleration method and the fully sampled data in three healthy subjects was 0.04 ± 0.02, and the difference in peak-systolic mean velocity was − 0.29 ± 2.56 cm/s.

Conclusion

Qualitative and quantitative evaluation of our preliminary results demonstrate that time-resolved variable-density random sampling is efficient for highly accelerating 4D flow imaging while maintaining image reconstruction accuracy.  相似文献   

20.

Background

Over the past two decades elective valve-sparing aortic root replacement (V-SARR) has become more common in the treatment of patients with aortic root and ascending aortic aneurysms. Currently there are little data available to predict complications in the post-operative population. The study goal was to determine if altered flow patterns in the thoracic aorta, as measured by MRI, are associated with complications after V-SARR.

Methods

Time-resolved three-dimensional phase-contrast MRI (4D flow) was used to image 12 patients with Marfan syndrome after V-SARR. The patients were followed up for an average of 5.8 years after imaging and 8.2 years after surgery. Additionally 5 volunteers were imaged for comparison. Flow profiles were visualized during peak systole using streamlines. Wall shear stress estimates and normalized flow displacement were evaluated at multiple planes in the thoracic aorta.

Results

During the follow-up period, a single patient developed a Stanford Type B aortic dissection. At initial imaging, prior to the development of the dissection, the patient had altered flow patterns, wall shear stress estimates, and increased normalized flow displacement in the thoracic aorta in comparison to the remaining V-SARR patients and volunteers.

Conclusions

This is the first follow-up study of patients after 4D flow imaging. An aortic dissection developed in one patient with altered flow patterns and hemodynamic stresses in the thoracic aorta. These results suggest that flow and altered hemodynamics may play a role in the development of post-operative intramural hematomas and dissections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号