首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Optical and magnetic studies on CuO nanoparticles prepared by a chemical route are reported and the effect of size variation on these properties is discussed. SEM images show that the nanoparticles are interlinked into microspheres with the cages containing visible nanoscale holes. Diffuse reflectance spectroscopy indicates a consistent red shift in the fundamental band gap (indirect band gap) from 1.23 to 1 eV as the size decreases from 29 to 11 nm. This observed red shift is attributed to the presence of defect states within the band gap. A clear blue shift is observed in the direct band gap of these nanoparticles presumably due to the quantum confinement effects. Air-annealed samples show a paramagnetic response whereas particles annealed in a reducing atmosphere show additionally a weak ferromagnetic component at room temperature. For both types of particles, the paramagnetic and ferromagnetic moments, respectively, increase with decreasing size. The role of oxygen vacancies is understood to relate to the generation of free carriers mediating ferromagnetism between Cu spins. AC susceptibility measurements show both the antiferromagnetic transitions of CuO including the one at 231 K which is associated with the onset of the spiral antiferromagnetic phase transition.  相似文献   

2.
This article describes a method for preparing CuO nanoparticles in aqueous solution, and a demonstration of feasibility of metallic bonding with the use of the CuO particles. Colloid solution of CuO nanoparticles was prepared from Cu(NO3)2 aqueous solution (0.01 M) and NaOH aqueous solution (0.019 M) at 5–80 °C. Leaf-like aggregates with an average size of 567 nm composed of CuO nanoparticles were produced at 20 °C. The size of leaf-like aggregates decreased with increasing reaction temperature. Metallic copper discs could be bonded using the CuO nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H2 gas. A shear strength required for separating the bonded discs was 25.4 MPa for the CuO nanoparticles prepared at 20 °C, whose aggregates were the largest among the CuO particles examined. These results indicated that the formation of leaf-like aggregates of CuO nanoparticles led to efficient metallic bonding.  相似文献   

3.
In this study we are able, using a copper grid substrate, to successfully grow separate nanowires with a high level of crystallinity, for a length of up to 10 μm. They were synthesized under various temperatures. We compare and contrast three types of geometries (micron-, nano-scale, and tip-like single CuO nanowires), to identify their potential for monitoring the size effects of quantum confinements. The confocal Raman spectrometry results confirm the expected outcome, that reducing of the diameter of a cylindrical cross-section of a single nanowire results in Raman frequency downshifts. The results can be explained by the bond polarizability model. The applicability of investigating the size effects of the quantum confinement of the tip-like geometry of a single nanowire without any preparation for different sizes of nanoparticles is possible because the detection is relatively straightforward and the reproduced Raman signals can be observed.  相似文献   

4.
Copper oxide (CuO) nanoparticles with an average size of 25 nm were prepared by a sol-gel method. A detailed study was made of the magnetization of CuO nanoparticles using a maximum field of 60 kOe for temperatures between 8 and 300 K. Antiferromagnetic CuO nanoparticles exhibit anomalous magnetic properties, such as enhanced coercivity and magnetic moments. Significantly, the magnitude of the hysteresis component tends to weaken upon increase in temperature (>8 K). In addition, a hysteresis loop shift and coercivity enhancement are observed at 8 K in the field-cooled (FC, at 50 kOe) case. It is thought that the change in hysteresis behavior is due to the uncompensated surface spins of the CuO nanoparticles. The susceptibility (χ) plot showed that χ varied substantially at temperatures below 12 K, and this transition is due to the exchange interactions between the neighboring atoms at the nanoscale.  相似文献   

5.
One-dimensional (1D) CuO nanostructures with nanoribbons, scroll-like structure, arrays of CuO nanoparticles and nanorod-like morphologies respectively, have been successfully prepared using the single-crystalline Cu2(OH)2CO3 nanoribbons as precursors for sacrifice-template via heat-treatments. The series of morphologies images for decomposition kinetics process of Cu2(OH)2CO3 nanoribbons as heat-treatment temperature increased are presented in this work. The result demonstrates that the morphologies of the 1D CuO nanostructures obtained are mainly due to the ribbon-like shape of the precursors. The morphologies of CuO nanostructures also strongly depend on the heat-treatment conditions. At relatively low heat-treatment temperature and heating rate, the morphological features of the precursor can be preserved well, while arrays of CuO nanoparticles can be obtained at higher heating rate and CuO rod-like shape can be prepared with increasing heat-treatment temperature.  相似文献   

6.
Well-dispersed cupric oxide (CuO) nanoparticles with the size from 10 to 100 nm were successfully synthesized by thermal decomposition of CuC2O4 precursor at 400 °C. The prepared CuO nanoparticles of different sizes used as anode materials for Li ion battery all exhibit high electrochemical capacity at the first discharge. However, with the particles size changing, an interesting phenomenon appears. That is, the larger size of the particles is, the discharge capacity of the first time smaller is, while that of the second time is larger. At the same time, the mechanism of the above phenomenon is discussed in this paper. Surprisingly, we have synthesized the copper nanoparticles with different sizes by the CuO of different sizes as the electrodes.  相似文献   

7.
Colloidal cupric oxide (CuO) nanoparticles were formed by using a colloid-thermal synthesis process. X-ray diffraction patterns, transmission electron microscopy (TEM) images, high-resolution TEM images, and X-ray energy dispersive spectrometry profiles showed that the colloidal CuO nanoparticles were formed. The optical band-gap energy of CuO nanoparticles at 300 K, as determined from the absorbance spectrum, was 3.63 eV. A photoluminescence spectrum at 300 K showed that a dominant emission peak appeared at the blue region. X-ray photoelectron spectroscopy profiles showed that the O 1s and the Cu 2p peaks corresponding to the CuO nanoparticles were observed.  相似文献   

8.
以六次甲基四胺为沉淀剂宿主、Cu(NO3)2为铜源在乙醇-水(1∶1,φ)体系中采用均匀沉淀法合成了前驱体Cu2(NO3)(OH)3,然后在不同温度下锻烧获得系列纳米CuO粉体,借助XRD,FTIR,XPS,FT-Raman和UV-Vis等测试手段对其谱学特性进行了系统研究。XRD分析表明,所得粉体为单斜晶系的纳米CuO,随锻烧温度的升高,粉体的粒径增大;XPS图谱表明,随热处理温度的升高CuO粉体的表面氧空位减少,导致表面吸附氧含量降低;FTIR图谱表明,随晶粒粒径的减小,在525cm-1附近处Cu—O键特征吸收峰明显宽化,且发生劈裂,劈裂小峰出现双移现象;FT-Raman谱图表明,随着粒径的减小,样品的拉曼散射峰出现宽化现象,并向低波数方向移动;UV-Vis吸收光谱表明,粉体在300~400nm之间有强的吸收,随着粒径的减小最大吸收发生蓝移。探讨了上述谱学规律的成因,对氧化物纳米粒子的谱学特性研究具有重要的借鉴意义。  相似文献   

9.
In this work, CuO/n-Si and AuNPs-decorated CuO/n-Si heterojunction photodetectors were fabricated by deposition of CuO nanoplatelets and Au nanoparticles NPs decorated CuO nanoplatelets on silicon substrates by laser ablation in methanol. Atomic force microscope AFM, scanning electron microscope SEM and transmission electron microscope TEM were used to study the structural and surface morphology of CuO and AuNPs–CuO. The electrical properties showed that the CuO/Si and AuNPs decorated-CuO/Si showed rectifying behavior. The maximum values of quantum efficiency were about 41 and 78% at 700 nm for CuO/Si and AuNPs–CuO/Si photodetectors, respectively. The I–V characteristics of the photodetectors were measured under UV light.  相似文献   

10.
We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin–phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects.  相似文献   

11.
A simple and surfactant-free synthesis of novel heterostructures comprising of copper oxide (CuO) nanowires uniformly decorated with cobalt oxide (Co3O4) nanoparticles was demonstrated by combining thermal growth and wet-coating method. The heterostructures were synthesized by thermally decomposing cobalt salt (cobalt nitrate) into Co3O4 nanoparticles onto vapor–solid (VS)-grown CuO nanowires. X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM) confirmed the presence of CuO and Co3O4 phases as well as a narrow size distribution of Co3O4 nanoparticles (average diameter ~7.0 ± 1.5 nm) on CuO nanowires (average diameter of nanowire tips ~67.9 ± 18.6 nm). Unique interfacial lattice relationship was observed for (111) Co3O4 nanoparticles on (200) CuO nanowire surface resulting in hemispherical shape of the former. For the first time, further systematic studies were performed to understand the influence of various parameters (cobalt salt concentration and annealing temperature, atmosphere, and time) on the morphological evolution of Co3O4 nanoparticles on CuO nanowires. Interestingly, by varying these parameters, it was possible to grow Co3O4 in different shapes (spherical, triangular, rectangular, cubical, and hexagonal nanoparticles) and forms (shells and nanorods). It was observed that all these parameters play a critical role in influencing the surface migration, nucleation, and growth of Co3O4 nanoparticles on CuO nanowires and this assisted in understanding the involved growth mechanisms. Finally, UV–vis–NIR spectroscopy and band gap energies for these heterostructures were evaluated that showed higher photocatalytic degradation efficiency for Rhodamine B under low-power visible-light illumination.  相似文献   

12.
Analysis of the experimental optical spectra of CuO nanoparticles with the electronic structure characterized by strong electron correlations has revealed the appearance of unusual states inside the band gap. The intragap states and the specific features of the electronic structure of CuO nanoparticles are discussed in the framework of the generalized tight-binding method previously developed for describing the electronic structure of superconducting cuprates.  相似文献   

13.
CuO hollow nanospheres with an average diameter of 400 nm and shell thickness of 40 nm have been successfully synthesized via a simple thermal oxidation strategy with Cu2O solid nanospheres as the precursor. The products have been characterized by X-ray diffraction, transmission electron microscopy and field emission scanning electron microscopy. The formation of CuO hollow nanospheres mainly results from the Kirkendall effect on the basis of temperature-dependent experiments. Furthermore, the electrochemical performance of CuO hollow nanospheres as anode materials for lithium ion batteries has been evaluated by cyclic voltammetry and galvanostatic discharge-charge experiments. The as-prepared CuO hollow nanospheres assembled by nanoparticles exhibit higher initial discharge capacity and better cycle performance than the reported CuO nanoparticles. The hierarchical hollow nanospheres have been demonstrated to take the advantages of nanoparticles and hollow architectures, which could not only shorten the lithium ion transport distance and increase the kinetics of conversion reactions, but also provide suitable electrode/electrolyte contact area and accommodate the volume change associated with lithium ion insertion and extraction.  相似文献   

14.
Size-tuned copper oxide nanoparticles with sizes of 9, 12, and 15 nm were fabricated by laser ablation and on-line size selection using a differential mobility analyzer at a gas pressure of 666 Pa. The dependence of the particle properties on the in situ annealing temperatures and selection sizes was investigated. The crystalline phases of the nanoparticles fabricated at temperatures below 973 K were assigned to monoclinic cupric oxide (CuO) which converted into cubic cuprous oxide (Cu2O) when the annealing temperature was above 1,173 K. This indicates that the crystalline phases can be easily controlled by changing the annealing temperature. TEM images confirmed that well-crystallized and well-dispersed CuO and Cu2O nanoparticles with narrow size distributions were obtained using this method. This fabrication process is useful and promising for the future investigation of the intrinsic size-dependent properties of CuO and Cu2O.  相似文献   

15.
Integrating materials with different functionalities into a composite material to obtain synergetic properties has generated considerable interest in various scientific and technical fields. In this study, a dry-mechanical coating process was used to fix nanosized Al2O3 and CuO particles directly onto the surface of Al2O3 fiber substrates by employing high shear and compression forces. The resulting composite materials showed good dispersion and homogeneous distribution of Al2O3 and CuO nanoparticles. Important coating parameters, including initial particle loadings and processing times were investigated for their effects on coating characteristics and product properties. The experimental results showed that the product surface area increased with higher nanoparticle loadings. The degree of dispersion and homogenous distribution of Al2O3 nanoparticles with CuO nanoparticles increased with the processing time. Additionally, the crystalline phase of raw materials was preserved during the coating process under the conditions studied in this work.  相似文献   

16.
Nanocomposites comprising CuO particles of average diameter 21 nm coated with 5 nm silica glass containing iron ions were synthesized by a chemical route. An ion exchange reaction at the nanoglass/CuO interface produced iron-doped CuO with copper ion vacancies within the nanoparticles. Room temperature ferromagnetic-like behavior was observed in the nanocomposites. This was ascribed to uncompensated spins contributed by Fe ions with associated copper ion vacancies. A rather high value of magnetodielectric parameter in the range 16–26% depending on the measuring frequency was exhibited by these nanocomposites at a magnetic field of 10 KOe. This was caused by a magnetoresistance of 33% in the iron doped CuO nanoparticles. The experimental results were fitted to the Maxwell–Wagner Capacitor model developed by Catalan. These materials will be suited for magnetic sensor applications.  相似文献   

17.
Microcrystalline cellulose is a porous natural material which can be used both as a support for nanoparticles and as a reducer of metal ions. Cellulose supported nanoparticles can act as catalysts in many reactions. Cu, CuO, and Cu2O particles were prepared in microcrystalline cellulose by adding a solution of copper salt to the insoluble cellulose matrix and by reducing the copper ions with several reducers. The porous nanocomposites were studied using anomalous small angle X-ray scattering (ASAXS), X-ray absorption spectroscopy, and X-ray diffraction. Reduction of Cu2+ with cellulose in ammonium hydrate medium yielded crystalline CuO nanoparticles and the crystallite size was about 6–20 nm irrespective of the copper concentration. The size distribution of the CuO particles was determined with ASAXS measurements and coincided with the crystallite sizes. Using sodium borohydrate or hydrazine sulfate as a reducer both metallic Cu and Cu2O nanoparticles were obtained and the crystallite size and the oxidation state depended on the amount of reducer.  相似文献   

18.
Homogeneous CuO/SiO2 and NiO/SiO2 nanocomposite coatings containing CuO and NiO nanoparticles in silica matrix were successfully synthesized by sol–gel process on an aluminum alloy substrate, respectively. The evolution of phase and morphology of both nanocomposites was characterized by XRD, SEM, TEM and FTIR. The effect of incorporating various nanoparticles on the corrosion behavior and the thermal conductivity of nanocomposite coatings was investigated by potentiodynamic polarization curve and comparative exponential method. The thermal conductivity as well as the corrosion resistance of nanocomposite coatings was significantly improved by the introduction of metal oxide particles. In comparison with NiO/SiO2 nanocomposite coatings, CuO/SiO2 composite coatings displayed lower protective behavior as well as higher thermal conductivity. Experimental results revealed that those improvements can directly be related to the nanocomposite effect and the nature of added nanoparticles.  相似文献   

19.
γ-Fe(2)O(3) nanoparticles were coated with a Cu shell in situ during synthesis. An interfacial monolayer of CuO in the Cu-coated γ-Fe(2)O(3) nanoparticles was discovered that stabilized the disordered surface spins of γ-Fe(2)O(3) nanoparticles. Element-specific x-ray absorption spectroscopy at the L-edges for Cu and Fe indicated the magnetic moment of the Cu in the shell interacted with the γ-Fe(2)O(3) nanoparticle's surface magnetic moments. This exchange interaction between the Fe and Cu at the interface permitted an overall Cu moment in CuO (an antiferromagnet typically) that altered the γ-Fe(2)O(3) nanomagnetism. Increasing the Cu shell thickness also increased the total Fe magnetism of the nanoparticles.  相似文献   

20.
A mild template-free mixed solution medium with the assistant of microwave method was successfully established to synthesize well-aligned CuO nanostructures. By varying process parameters such as the volume ratio of the mixed solution, different kinds of architectural structures can be controllably synthesized in large quantities. On the basis of the results, it is found that the polarity of the solution plays the key role in controlling the growth of the CuO crystal. The as-prepared CuO products were characterized using diverse techniques including X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The gas sensor property investigation shows that the sensitivities to ethanol of the as-prepared CuO nanostructures are higher than those of normal CuO nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号