首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
A carbon paste electrode modified with benzoylferrocene (BF) and carbon nanotubes (CNTs) have been applied to the electrocatalytic oxidation of homocysteine which reduced the overpotential by about 165 mV with an obvious increase in the current response. The transfer coefficient (α) for the electrocatalytic oxidation of homocysteine and diffusion coefficient of this substance under the experimental conditions were also investigated. In a phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of homocysteine; one is 0.1 to 10.0 μM, and the other is 10.0 to 80.0 μM. The detection limit (3σ) obtained by square wave voltammetry (SWV) was 50.0 nM. The proposed method was successfully applied to the determination of homocysteine in real samples.  相似文献   

2.
The electrooxidation of hydrochlorothiazide (HCT) at the surface of a benzoylferrocene modified multi-walled carbon nanotube paste electrode was studied using electrochemical approaches. Under the optimized conditions (pH 7.0), the square wave voltammetric peak current of HCT increased linearly with HCT concentration in the ranges of 6.0?×?10?7 to 3.0?×?10?4 M. The detection limit was 9.0?×?10?8 M HCT. The diffusion coefficient (D?=?1.75?×?10?5 cm2/s) and electron transfer coefficient (α?=?0.45) for HCT oxidation were also determined. The proposed sensor was successfully applied for the determination of HCT in human urine and tablet samples.  相似文献   

3.
An ionic liquid-modified carbon nanotubes paste electrode (IL/CNTPE) has been fabricated using hydrophilic ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) as a binder. This electrode showed enhanced electrochemical response and strong analytical activity towards the direct electrochemical oxidation of diclofenac (DCF). The electron transfer coefficient, α, and charge transfer resistance (R ct) of DCF at the modified electrode were calculated. Under optimal conditions at pH 7.0, the anodic peak currents increased linearly with the concentration of DCF in the range of 0.5–300 μmol L?1 with a detection limit of 0.2 μmol L?1 (3σ). The interferences of foreign substances were investigated. Differential pulse voltammetry was used to check the applicability of the proposed sensor to the determination of DCF in real samples with satisfactory results.  相似文献   

4.
This paper presents a sensitive electrochemical method for the determination of cysteamine (CA) using promazine hydrochloride-modified multi-wall carbon nanotubes carbon paste electrode (PrH/MWCNTs CPE). Because of the good electrochemical activity of MWCNTs and the acceptable performance of promazine hydrochloride (PrH) as an electrocatalytic mediator, the modified electrode significantly enhanced the sensitivity for the detection of CA in comparison to the bare carbon paste electrode (CPE). All chemical parameters such as pH of solution, concentration of PrH and kinetic parameters of the system were investigated. Linear sweep voltammetric (LSV) method was used to follow the electrocatalytic effect of CA on the current–potential response of PrH. Under optimum conditions, the obtained net peak current ?I p(I sample???I blank) was linear with CA concentrations in two dynamic ranges of 2.0–346.5 μmol l?1 (?I p?=?(0.0195?±?0.0043)C CA?+?(0.7648?±?0.0397) (r 2?=?0.9948)) and 346.5–1,912.5 μmol l?1 (?I p?=?(0.0100?±?0.0026)C CA?+?(3.8981?±?0.0828) (r 2?=?0.9911)) with a detection limit of 0.8 μmol l?1. Finally, the PrH/MWCNTs CPE was successfully applied for the determination of CA in urine and drug samples with satisfactory results.  相似文献   

5.
The direct electrochemistry of morphine on modified multiwall carbon nanotubes using carbon ionic liquid (i.e., 1-butyl-3-methylimidazolium hexafluoro phosphate, ([C4mim]–[PF6])) was studied. It was found that the electrode showed sensitive voltammetric response to morphine. The experimental results suggested that the modified electrode promoted electron transfer reaction for the oxidation of morphine. The electron transfer coefficient and charge transfer resistant (R ct) of morphine at the modified electrode were calculated. Under the optimized conditions at pH 8.0, the peak current was linear to morphine concentrations over the concentration range of 0.45–450 μmol L−1, using differential pulse voltammetry. The detection limit was 0.14 μmol L−1. The proposed method was successfully applied to the determination of morphine in both ampoules and urine samples.  相似文献   

6.
Ionic liquid/multiwall carbon nanotubes paste electrode has been used as a novel sensor for the efficient quantitative determination of methyldopa (MDOP) in pharmaceutical and biological samples by using square wave voltammetry. This new sensor shows a better electrochemical response with lower over-potential and high sensitivity for MDOP compared with unmodified carbon paste electrode in physiological condition. The electro-oxidation of MDOP occurred in a pH-dependent 2e? and 2H+ process, and the electrode reaction followed a diffusion-controlled pathway. Under the optimum conditions, the voltammetric oxidation peak current of MDOP showed two linear dynamic ranges with a detection limit of 0.1 μM for MDOP. The novel sensor has been found selective and successfully implemented for the determination of MDOP in real samples such as tablet and patient urine.  相似文献   

7.
This paper reports the selective and sensitive voltammetric determination of l-cysteine in the presence of folic acid using ethynylferrocene modified carbon nanotubes paste electrode in 0.1 M phosphate buffer solution (pH 7.0). Using square wave voltammetry, we could measure l-cysteine and folic acid in one mixture independently from each other by a potential difference of about 410 mV for the first time. Square wave voltammetric peak current of l-cysteine and folic acid increased linearly with their concentrations in the ranges of 0.2–250.0 and 1.0–500.0 μmol?L?1, respectively. The detection limits of 0.07 and 0.6 μmol?L?1 were achieved for l-cysteine and folic acid, respectively. The proposed voltammetric sensor was successfully applied to the determination of l-cysteine and folic acid in real samples.  相似文献   

8.
The electrocatalytic oxidation of l-tyrosine (Tyr) was investigated on a carboxylic acid functionalised multi-walled carbon nanotubes modified carbon paste electrode using cyclic voltammetry and amperometry. The surface morphology of the electrodes was studied using field emission (FE)-SEM images, and the interface properties of bare and modified electrodes were investigated by electrochemical impedance spectroscopy (EIS). The influence of the amount of modifier loading and the variation of the pH of the solution on the electrochemical parameters have been investigated. Cyclic voltammetry was carried out to study the electrochemical oxidation mechanism of Tyr, which showed an irreversible oxidation process at a potential of 637.0 mV at modified electrode. The anodic peak current linearly increased with the scan rate, suggesting that the oxidation of Tyr at modified electrode is an adsorption-controlled process. A good linear relationship between the oxidation peak current and the Tyr concentration in the range of 0.8–100.0 μM was obtained in a phosphate buffer solution at pH 7.0 with a detection limit of 14.0?±?1.36 nM (S/N?=?3). The practical utility of the sensor was demonstrated by determining Tyr in spiked cow’s milk and human blood serum. The modified electrode showed excellent reproducibility, long-term stability and antifouling effects.  相似文献   

9.
Yao  Yuanyuan  Zhang  Long  Wen  Yangping  Wang  Zifei  Zhang  Hui  Hu  Dufen  Xu  Jingkun  Duan  Xuemin 《Ionics》2015,21(10):2927-2936
Ionics - A simple, sensitive, and reliable carboxylic group functionalized single-walled carbon nanotubes (f-SWCNTs)/poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOTM) modified glassy...  相似文献   

10.
Ionics - A simple and rapid method was employed for the modification of carbon paste electrode with iron nanoparticle-decorated multiwalled carbon nanotubes (MCPE/Fe-MWCNTs). The synergistic effect...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号