首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A simple route was designed to extract the cellulose nanocrystals (CNCs) with formate groups from industrial and agricultural celluloses like microcrystalline cellulose (MCC), viscose fiber, ginger fiber, and bamboo fiber. The effect of reaction time on the microstructure and properties of the CNCs was investigated in detail, while microstructure and properties of different CNCs were compared. The rod-like CNCs (MCC) with hundreds of nanometers in length and about 10 nm in width, nanofibrillated CNCs (ginger fiber bamboo fiber) with average width of 30 nm and the length of 1 μm, and spherical CNCs (viscose fiber) with the width of 56 nm were obtained by one-step HCOOH/HCl hydrolysis. The CNCs with improved thermal stability showed the maximum degradation temperature (T max) of 368.9–388.2 °C due to the introduction of formate groups (reducibility) and the increased crystallinity. Such CNCs may be used as an effective template for the synthesis of nanohybrids or reinforcing material for high-performance nanocomposites.  相似文献   

2.
We synthesized Fe3O4@C@Ag nanocomposites through a combination of solvothermal, hydrothermal, and chemical redox reactions. Characterization of the resulting samples by X-ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning and transmission electron microscopy, and magnetic measurement is reported. Compared to Fe3O4@Ag nanocomposites, the Fe3O4@C@Ag nanocomposites showed enhanced antibacterial activity. The Fe3O4@C@Ag nanocomposites were able to almost entirely prevent growth of Escherichia coli when the concentration of Ag nanoparticles was 10 μg/mL. Antibacterial activity of the Fe3O4@C@Ag nanocomposites was maintained for more than 40 h at 37 °C. The intermediate carbon layer not only protects magnetic core, but also improves the dispersion and antibacterial activity of the silver nanoparticles. The magnetic core can be used to control the specific location of the antibacterial agent (via external magnetic field) and to recycle the residual silver nanoparticles. The Fe3O4@C@Ag nanocomposites will have potential uses in many fields as catalysts, absorbents, and bifunctional magnetic-optical materials.  相似文献   

3.
The crystalline structure, surface morphology, electrical, and optical properties of thin films of nanocomposites consisting of silver nanoparticles embedded in poly(p-xylylene) matrix prepared by low-temperature vapor deposition polymerization were studied. Depending on the filler content, the average size of silver nanoparticles varied from 2 to 5 nm for nanocomposites with 2 and 12 vol.% of silver, correspondingly. The optical adsorption in the visible region due to surface plasmon resonance also exhibited a clear correlation from silver content, revealing a red shift of the adsorption peak with the increase of the metal concentration. The temperature dependences of the dc resistance of pure p-xylylene condensate and p-xylylene–silver cocondensates during polymerization as well as temperature dependences of the formed poly(p-xylylene)–silver nanocomposites were examined. The observed variation of the temperature dependences of electrical resistance as a function of silver concentration are attributed to different conduction mechanisms and correlated with the structure of the composites. The wide-angle X-ray scattering and AFM measurements consistently show a strong effect of silver content on the nanocomposite structure. The evolution of the size of silver nanoparticles by thermal annealing was demonstrated.  相似文献   

4.
Cu–Ag core–shell particles were fabricated from Cu particles and silver sulphate with the environmental-friendly TA (tartaric acid, C4H6O6) as reducing and chelating agent in an aqueous system. The influences of [TA]/[Ag] and [Ag]/[Cu] molar ratios on the formation of Ag coatings on the Cu particles were investigated. The SEM images and SEM–EDS analyses showed that [TA]/[Ag] = 0.5 and [Ag]/[Cu] ≥0.2, the Cu particles were coated with uniform Ag nanoparticles. XRD analyses revealed that for these Cu–Ag particles heated at 250 °C, the oxidation of Cu was significantly reduced. Both anti-Staphylococcus aureus (Gram-positive) and anti-Escherichia coli (Gram-negative) characteristics of this Cu–Ag composite particles showed satisfactory antibacterial ability. The characteristics of the composite Cu–Ag particles were discussed in detail.  相似文献   

5.
Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50–120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag2S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20–50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag+ ions.  相似文献   

6.
The effects of addition of synthesized organic-suspension silver nanoparticles on the crystallization and thermal stability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (XRD), UV-Vis absorption spectroscopy, polarized optical microscopy (POM), and thermal gravimetric analysis (TGA). The TEM images showed the average primary size of the as-synthesized silver nanoparticles, coated with a monolayer of the surfactants consisting of oleic acid and an alkylamine, was about 5 nm with narrow distribution, and that they were uniformly dispersed in n-heptane. PHBV/silver nanocomposites were prepared by melt mixing in an internal mixer and then injection molded into rectangle-shaped specimens by a labscale injection molding device. The coated silver nanoparticles showed a homogenuous dispersion in the PHBV matrix when the content of coated silver nanoparticles was about 1%. Both the DSC and POM data showed the efficient heterogeneous nucleation by the coated silver nanoparticles for facilitating PHBV crystallization. The thermal stability of the PHBV/silver nanocomposites improved with the increase in the content of the coated silver nanoparticles.  相似文献   

7.
Silver/ceria (Ag/CeO2) nanocomposites were prepared from Ce(NO3)3?6H2O, AgNO3, and NH4OH with different molar ratios through a hydrothermal process, and then were completed by carrying out the precursors calcining at 750 °C for 2 h under air atmosphere. Below 1 % of Ag concentration in Ag/CeO2 nanocomposites, the Ag crystalline structure does not appear. XRD and TEM results show evidence of two different effects (the agglomeration and the barrier effects) governing the process of crystal growth. HR-TEM image and EDX elemental analysis of the Ag/CeO2 nanocomposite confirmed that isolated Ag nanocrystals are dispersed in the CeO2 matrix. The red shifts are attributed to the quantum confinement effect and the valence change of the Ce+ ions. Ag nanoparticles can help to improve the absorption of visible light, enhancing the absorption intensity of Ag/CeO2 nanocomposite. These results are of great significance for the control of microstructure, crystallinity, and applications for the development of nanocomposite materials.  相似文献   

8.
A one-step simple synthesis of silver colloid nanoparticles with controllable sizes is presented in this research. In the synthesis, an amino-terminated hyperbranched polymer (HBP-NH2) was applied as a stabilizer and a reductant. The syntheses, performed at various initial AgNO3 concentrations (0.28–0.56 g/l) in a 2 g/l HBP-NH2 aqueous solution, produced silver colloid nanoparticles having average sizes from 3 to 30 nm with narrow size distributions. The formation of silver colloid nanoparticles was characterized by Fourier Transform Infrared Spectrophotometry (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), UV/Visible Absorption Spectrophotometry, and X-ray Diffraction (XRD) measurements. The results indicated that both particle size and the UV absorption are strongly dependent on the initial AgNO3 concentrations. The silver colloid nanoparticles, prepared with a 0.35 g/l AgNO3 aqueous solution in the presences of 2 g/l HBP-NH2, showed good antibacterial activities against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). A very low concentration of nano-silver (as low as 3.0 ug/ml Ag) also gave excellent antibacterial performance.  相似文献   

9.
Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 ± 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO2 nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO2 covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.  相似文献   

10.
The development of a highly effective and recyclable antibacterial agent is of great interest. In this work, magnetic Fe3O4/Ag antibacterial nanoagent was successfully fabricated through a facile surface functionalization approach. Utilizing the strong interaction between silver and the amino groups on the surface of Fe3O4 nanospheres, the nanosized silver particles were tightly bonded on the Fe3O4 nanospheres' surface, improving silver nanoparticals? antibacterial activity by preventing agglomeration of silver nanoparticles. Our antibacterial tests showed that the as-synthesized Fe3O4/Ag nanospheres presented high antibacterial performance against Gram-negative and Gram-positive bacteria. Moreover, these antibacterial nanohybrids can be easily recycled from water solution by applying an external magnetic field. Overall, taking into consideration the facile preparation method, excellent antibacterial activity and high magnetic recycling property, the as-synthesized Fe3O4/Ag nanospheres have great potential applications in medicine and water disinfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号