首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
Synthesis of core @ shell (Au @ Ag) nanoparticle with varying silver composition has been carried out in aqueous poly vinyl alcohol (PVA) matrix. Core gold nanoparticle (~15 nm) has been synthesized through seed-mediated growth process. Synthesis of silver shell with increasing thickness (~1–5 nm) has been done by reducing Ag+ over the gold sol in the presence of mild reducing ascorbic acid. Characterization of Au @ Ag nanoparticles has been done by UV–Vis, High resolution transmission electron microscope (HRTEM) and energy dispersive X-ray (EDX) spectroscopic study. The blue shift of surface plasmon resonance (SPR) band with increasing mole fraction of silver has been interpreted due to dampening of core, i.e. Au SPR by Ag. The dependence of nonlinear optical response of spherical core @ shell nanoparticles has been investigated as a function of relative composition of each metal. Simulation of SPR extinction spectra based on quasi-static theory is done. A comparison of our experimental and the simulated extinction spectra using quasi-static theory of nanoshell suggests that our synthesized bimetallic particles have core @ shell structure rather than bimetallic alloy particles.  相似文献   

2.
Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen. Taking 2-methyl aniline as an example, we show that metal reduction is followed by polymerization of the amine, while part of it covers the nanoparticle surface another fraction deposits in the solution. It is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles. The gold nanoparticles thus formed have a mean diameter of 20 nm. The polymerized amine encapsulates the gold nanoparticle forming a robust shell of about 5 nm thickness, making the gold core inert towards mineralizing agents such as chloroform, bromoform, sodium cyanide, benzylchloride, etc. which react with the naked gold nanoparticles. The deposited polymer is largely protonated, taking up protons from the medium during its formation. Similar results have been observed in the case of aniline also. The materials have been fully characterized by spectroscopy and microscopy.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

3.
A compact bench‐top system based on a dielectric barrier plasma discharge (DBD), enables the rapid, automatable, and continuous‐flow synthesis of gold nanoparticles (AuNPs) and radioactive gold nanoparticles (198AuNPs). AuNPs are used as radiosensitizers in oncology, and 198AuNPs (half‐life: 2.7 d) have been suggested as potential cancer brachytherapy sources. Plasma applied at the surface of a liquid containing gold ions (AuCl4?) and dextran induces the production of AuNPs directly in water. This synthesis is monitored in real time by UV–visible spectrometry: the change of absorbance of the solution provides new insights on the growth dynamics of AuNPs by plasma synthesis. By balancing gold ions and surfactant molecules, particles with a diameter lying in the optimal range for radiosensitizing applications (28 ± 9 nm) are produced. The method yields a reduction of more than 99% of the gold ions within only 30 min of plasma treatment. A postsynthesis ripening of the AuNPs is revealed, monitored by UV–visible spectrometry, and quantified within the first few hours following plasma treatment. Radioactive 198AuNPs are also produced by DBD synthesis and characterized by electron microscopy and single‐photon emission computed tomography imaging. The results confirm the efficiency of DBD reactors for AuNPs synthesis in oncology applications.  相似文献   

4.
The synthesis of palladium nanoparticles and conditions of their deposition on active carbon fibers in the microreactor was described. All processes related with metal ion reduction, nucleation, and autocatalytic growth of particles as well as their deposition were carried out in the microreactor in only one cycle. Synthesis of palladium nanoparticles was carried out under different conditions, i.e., changing the initial concentration of metal ions and the reductant, at 40 °C. Depending on the conditions imposed, the nanoparticles of different size (hydrodynamic radius change from 12 to 37 nm) and shape (spherical, cube, pyramid) were obtained. It was also shown that flow conditions allow for much more efficient Pd deposition on active carbon fibers than the process carried out in the batch. It was observed that for concentrations of Pd(II) ions higher than 0.2 mM, the degree of fiber surface coverage increased significantly in comparison with the batch process.  相似文献   

5.
Composites of metal nanoparticles and environmentally sensitive polymers are useful as nanoactuators that can be triggered externally using light of a particular wavelength. We demonstrate a synthesis route that is easier than grafting techniques and allows for the in situ formation of individual gold nanoparticles encapsulated by an environmentally sensitive polymer, while also providing a strong interaction between the polymer and the metal particle. We present a one-pot, room-temperature synthesis route for gold metal nanoparticles that uses poly-N-isopropyl acrylamide as the capping and stabilizing agent and ascorbic acid as the reducing agent and achieves size control similar to the most common citric acid synthesis. We show that the composite can be precipitated reversibly by temperature or light using the non-radiative decay and conversion to heat of the surface plasmon resonance of the metal nanoparticle. The precipitation is induced by the collapse of the polymer cocoon surrounding each gold nanoparticle, as can be seen by surface plasmon spectroscopy. The experiments agree with theoretical models for the heat generation in a colloidal suspension that support fast switching with low laser power densities. The synthesized composite is a simple nanosized opto-thermal switch.  相似文献   

6.
In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.  相似文献   

7.
Sedimentation and diffusion are important aspects of the behavior of colloidal nanoparticles in solution, and merit attention during the synthesis, characterization, and application of nanoparticles. Here, the sedimentation of nanoparticles is studied quantitatively using digital photography and a simple model based on the Mason–Weaver equation. Good agreement between experimental time‐lapse photography and numerical solutions of the model is found for a series of gold nanoparticles. The new method is extended to study for the first time the gravitational sedimentation of DNA‐linked gold nanoparticle dimers as a model system of a higher complexity structure. Additionally, simple formulas are derived for estimating suitable parameters for the preparative centrifugation of nanoparticle solutions.  相似文献   

8.
Surface‐enhanced Raman scattering (SERS) on silver and gold colloid gels formed by a low molecular weight organic gelator, bis‐(S‐phenylalanine) oxalyl amide, was obtained. Strong Raman signals dominate in the SERS spectra of hydrogels containing silver nanoparticles prepared by citrate and borohydride reduction methods, whereas broad bands of low intensity are detected in the spectra of gold colloid gels. Resemblance between Raman spectrum of the crystalline substance and the SERS spectra of the silver nanoparticle–hydrogel composites implies the electromagnetic nature of the signal enhancement. A change in Raman intensity of the benzene and amide II bands caused by an increase in temperature and concentration indicates that the gelling molecules are strongly attached through the benzene moieties to the metal nanoparticles while participating in gel formation by intermolecular hydrogen bonding between the adjacent oxalyl amide groups. Transmission electron microscopy reveals a dense gel structure in the close vicinity of the enhancing metal particles for both silver colloid gels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
New morphology of palladium nanoparticles is demonstrated by utilizing the interaction of amino acid and palladium metallic surface. Chiral cysteine molecules induce chiral spiral structure evolution. The resulting spiral palladium nanoparticles show rotational direction preference with respect to the handedness of the added cysteine molecule. The strong correlation of the resulting morphologies with surfactant and cysteine concentration exists for effective generation of chirality. Synthesized chiral palladium nanoparticles are around 100 nm sized cubic based nanoparticles with each face of the cube containing a spiral structure. Generation of nanoparticle morphology is studied through growth of time‐dependent morphology evolution with statistical analysis of spiral structure formation. The reported synthesis method can provide a new route to nanomaterial design for enantioselective catalysis and sensing.  相似文献   

10.
The optical properties of two‐dimensional assemblies of metal nanoparticles are strongly influenced by the morphological configuration of the metal particles in the layer. Therefore, we correlate the structural and optical properties of two‐dimensional, hexagonal gold nanoparticle arrays. We characterize the structure of the arrays using grazing‐incidence small angle X‐ray scattering (GISAXS). From the GISAXS pattern, we determine the size of the gold particles as well as the lattice spacing of the hexagonal assembly. Based upon these parameters we calculate the dielectric function of the gold particle array using the Maxwell–Garnett effective medium theory. We further deduce the absorption spectrum which closely follows the measured absorption and photoconductance spectrum. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Microreactors for nanoparticle (NP) synthesis offer advantages over batch reactions in terms of scale‐up and integration with online analyses. Herein, two microreactors (i.e., a duo‐microreactor) are integrated to achieve sequential reactions for the synthesis of bimetallic NPs with architectural control. The generality of the duo‐microreactor is shown with the synthesis of branched Pd‐Pt NPs and core@shell Pd@Au NPs, both achieved by synthesizing Pd nanocubes in the first part of the duo‐microreactor and then using those nanocubes downstream as seeds for Pt or Au deposition. Control of the dimensions of these NPs is further demonstrated and achieved by tailoring metal precursor concentrations inline. This microreactor methodology is anticipated to be applicable to other bimetallic NP systems.  相似文献   

12.
The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review.  相似文献   

13.
Zhou  Y.  Hao  L.Y.  Zhu  Y.R.  Hu  Y.  Chen  Z.Y. 《Journal of nanoparticle research》2001,3(5-6):377-381
Polyacrylamide (PAM)–metal (M = gold, palladium) nanocomposites with metal nanoparticles homogeneously dispersed in the polymer matrix have been prepared via a novel ultraviolet irradiation technique at room temperature, which is based on the simultaneous occurrence of photo-reduction formation of the colloidal metal particles and photo-polymerization of the acrylamide (AM) monomer. The UV–vis absorption spectra and TEM were employed to characterize the M-PAM nanocomposites by different irradiation times. The average sizes of the colloidal gold and palladium particles dispersed in the nanocomposites were calculated by XRD patterns and TEM images. The present method may be extended to prepare other metal–polymer hybrid nanocomposite materials.  相似文献   

14.
Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.  相似文献   

15.
A new method is reported for detecting heavy metal ions by using the self assembled monolayer (SAM) technique and surface enhanced Raman spectroscopy (SERS). The p‐mercaptobenzoic acid (MBA) served as the SERS readout molecule and the modified tag to attach on the smooth gold substrate as well as the tag of nanoparticles by the SAM method. Two carboxyl groups from MBA molecules which were attached respectively to gold substrate and gold nanoparticles were linked through the heavy metal ions (Cu2+, Pb2+ and Zn2+) as bridge, and thus sandwich structure of ‘MBA modified gold substrate/heavy metal ions/MBA modified gold nanoparticles’ was built for detection. The observation of the oxidation peak of metal nanoparticles from cyclic voltammetry (CV) curve, gold nanoparticles from scanning electron microscopy (SEM) images and SERS signal of MBA from the sandwich structure indicated the existence of heavy metal ions. The difference in the wavenumbers of vibrational modes from MBA in the sandwich structure constructed by different could be used to identify different heavy metal ions. The assembled structure was rinsed by strong chelator of EDTA solution to remove the heavy metal ions from the sandwich structure and thus to obtain a fresh gold substrate modified with MBA for the cyclic detection. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The syntheses of hexadecylamine seed mediated Ag/M (M=Co, Ni, Pd and Pt) allied nanobimetallic particles were successfully carried out by the successive reduction of ligand capped metal ions with polyols, resulting in concomitant precipitation of some high index faceted hybrid Ag/M bimetal nanoparticles. The optical measurements revealed the existence of surface plasmon band and peak broadening that causes diffusion processes of the metal sols to decrease making it possible to monitor the changes spectrophotometrically. The bimetallic nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and electron microscopy techniques which confirm the formation of alloyed clusters.  相似文献   

17.
Gold nanoshells with tunable surface plasmon resonances are a promising material for optical and biomedical applications. They are produced through seed‐mediated growth, in which gold nanoparticles (AuNPs) are seeded on the core particle surface followed by growth of the gold seeds into a shell. However, synthetic gold nanoshell production is typically a multistep, time‐consuming batch‐type process, and a simple and scalable process remains a challenge. In the present study, a continuous flow process for the seed‐mediated growth of silica–gold nanoshells is established by exploiting the excellent mixing performance of a microreactor. In the AuNP‐seeding step, the reduction of gold ions in the presence of core particles in the microreactor enables the one‐step flow synthesis of gold‐decorated silica particles through heterogeneous nucleation. Flow shell growth is also realized using the microreactor by selecting an appropriate reducing agent. Because self‐nucleation in the bulk solution phase is suppressed in the microreactor system, no washing is needed after each step, thus enabling the connection of the microreactors for the seeding and shell growth steps into a sequential flow process to synthesize gold nanoshells. The established system is simple and robust, thus making it a promising technology for producing gold nanoshells in an industrial setting.  相似文献   

18.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A wide range of nanoparticle properties can be tuned by changing their surface characteristics, especially when dealing with ultrathin nanomaterials. Surface modification with transition‐metal ions may affect a variety of the nanoparticles' properties including the surface charge, the electronic structure, and the electrical and optical characteristics. In this work, a surface study of ceria nanoparticles modified by attachment of various transition‐metal ions to their surface is conducted. Characterization of the decorated particles as well as of the modifying transition‐metal ion is carried out using zeta potential in organic solution, UV–Vis absorption, and electron paramagnetic resonance measurements, together with isothermal titration calorimetry, X‐ray photoelectron spectroscopy, and energy dispersive X‐ray spectroscopy. All measurements confirm the attachment of the cation to the surface of ceria, both in solid state and in colloidal suspension. It is suggested that the modifying ion‐complex attaches to ceria both via chemical or strong physical interactions and weak physical interactions, demonstrated by a case‐study modification of ceria using a copper‐oleylamine complex. The metalization has a significant effect on the surface charge of the nanoparticles by shifting the zeta potential to more positive values and on the optical properties of the modifying transition‐metal ions by red‐shifting their absorption peak.  相似文献   

20.
The development of dependable, environmentally benign processes for the synthesis of nanoscale materials is an important aspect of nanotechnology. In the present study, we report one-pot biogenic fabrication of palladium nanoparticles by a simple procedure using broth of Cinnamomum camphora leaf without extra surfactant, capping agent, and/or template. The mean size of palladium nanoparticles, ranging from 3.2 to 6.0 nm, could be facilely controlled by merely varying the initial concentration of the palladium ions. The polyols components and the heterocyclic components were believed to be responsible for the reduction of palladium ions and the stabilization of palladium nanoparticles, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号