首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental and theoretical works on the ratchet effects in quantum wells with a lateral superlattice excited by alternating electric fields of terahertz frequency range has been reviewed. We discuss the Seebeck ratchet effect and helicity driven photocurrents and show that the photocurrent generation is based on the combined action of a spatially periodic in-plane potential and a spatially modulated light.  相似文献   

2.
We have considered a five-dimensional action, which is composed of a gravitational sector and a sector of matter, where the gravitational sector is given by a Chern-Simons gravity action instead of the Einstein-Hilbert action and where the matter sector is given by the so-called perfect fluid with barotropic EoS and new holographic dark energy. We will study the dynamic formulation of Chern-Simons gravity, where the coupling constant is promoted to a scalar field with potential. We have studied the implications of replacing the Einstein-Hilbert action by the Chern-Simons action on the cosmological evolution for a 5D FRW metric. The deceleration parameter shows that our considered model cannot cross the phantom divide. Also the natures of the cosmography parameters are examined in Chern-Simons gravity.  相似文献   

3.
Propagation of the action potential in the real heart is direction-dependent (anisotropic). We propose two general physical models explaining this anisotropy on the cellular level. The first, “delay” model takes into account the frequency of the cell-cell transitions in different directions of propagation, assuming each transition requires some small time interval. The second model relies on the assumption that the action potential transmits to the next cell only from the area at the pole of the previous cell. We estimated parameters of both models by doing optical mapping and fluorescent staining of cardiac cell samples grown on polymer fiber substrate. Both models gave reasonable estimations, but predicted different behaviors of the anisotropy ratio (ratio of the highest and lowest wave velocities) after addition of the suppressor of sodium channels such as lidocaine. The results of the experiment on lidocaine effect on anisotropy ratio were in favor of the first, “delay” model. Estimated average cell-cell transition delay was 240 ± 80 μs, which is close to the characteristic values of synaptic delay.  相似文献   

4.
The effect of the electric potential on the microhardness of aluminum, zirconium, and ferrosilicon was studied experimentally. The effect of the proper electric potential applied to a sample is compared with the effect of the potential induced by the contact potential difference upon contact with metals with a different electron work function. These two types of electrical action are revealed to be qualitatively equivalent to each other. It is established that these effects can markedly (up to 15%) change the microhardness of the metals.  相似文献   

5.
We show that, in a model of modified gravity based on the spectral action functional, there is a nontrivial coupling between cosmic topology and inflation, in the sense that the shape of the possible slow-roll inflation potentials obtained in the model from the nonperturbative form of the spectral action is sensitive not only to the geometry (flat or positively curved) of the universe, but also to the different possible non-simply connected topologies. We show this by explicitly computing the nonperturbative spectral action for some candidate flat cosmic topologies given by Bieberbach manifolds and showing that the resulting inflation potential differs from that of the flat torus by a multiplicative factor, similarly to what happens in the case of the spectral action of the spherical forms in relation to the case of the 3-sphere. We then show that, while the slow-roll parameters differ between the spherical and flat manifolds but do not distinguish different topologies within each class, the power spectra detect the different scalings of the slow-roll potential and therefore distinguish between the various topologies, both in the spherical and in the flat case.  相似文献   

6.
We consider the field theory of N massless bosons which are free except for an interaction localized on the boundary of their (1+1)-dimensional world. The boundary action is the sum of two pieces: a periodic potential and a coupling to a uniform abelian gauge field. Such models arise in open-string theory and dissipative quantum mechanics, and possibly in edge state tunneling in the fractional quantized Hall effect. We explicitly show that conformal invariance is unbroken for certain special choices of the gauge field and the periodic potential. These special cases are naturally indexed by semi-simple, simply laced Lie algebras. For each such algebra, we have a discrete series of conformally invariant theories where the potential and gauge field are conveniently given in terms of the weight lattice of the algebra. We compute the exact boundary state for these theories, which explicitly shows the group structure. The partition function and correlation functions are easily computed using the boundary state result.  相似文献   

7.
Most studies on the magnetic Aharonov–Bohm (A–B) effect focus on the action exerted by the magnetic flux on the electron beam, but neglect the back-action exerted by the electron beam on the magnetic flux. This paper focuses on the latter, which is the electromotive force ΔU across the solenoid induced by the time-dependent magnetic field of the electron beam. Based on the backaction analysis, we observe that the magnetic A–B effect arises owing to the interaction energy between the magnetic field of the electron beam and the magnetic field of the solenoid. We also demonstrate that the interpretation attributing the magnetic A–B effect to the vector potential violates the uncertainty principle.  相似文献   

8.
The potential profile for a model of squid axon membrane has been determined for two physiological states: resting and action states. The non-linear Poisson-Boltzmann equation has been solved by considering the volumetric charge densities due to charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmatic proteins. Results showing the features of the potential profile along the outer electrolytic region are similar for both resting and action states. However, the potential fall along glycocalyx at action state is lower than at resting. A small variation in the Na+ concentration drastically affects the surface membrane potentials and vice versa. We conclude that effects on the potential profile due to surface lipidic bilayer charge and contiguous electric double layers are more relevant than those provoked by fixed charges distributed along the cell cytoplasm.  相似文献   

9.
We rigorously define the Liouville action functional for the finitely generated, purely loxodromic quasi-Fuchsian group using homology and cohomology double complexes naturally associated with the group action. We prove that classical action – the critical value of the Liouville action functional, considered as a function on the quasi-Fuchsian deformation space, is an antiderivative of a 1-form given by the difference of Fuchsian and quasi-Fuchsian projective connections. This result can be considered as global quasi-Fuchsian reciprocity which implies McMullen's quasi-Fuchsian reciprocity. We prove that the classical action is a Kähler potential of the Weil-Petersson metric. We also prove that the Liouville action functional satisfies holography principle, i.e., it is a regularized limit of the hyperbolic volume of a 3-manifold associated with a quasi-Fuchsian group. We generalize these results to a large class of Kleinian groups including finitely generated, purely loxodromic Schottky and quasi-Fuchsian groups, and their free combinations.  相似文献   

10.
In the heart, the AV node is the primary conduction pathway between the atria and ventricles and subserves an important function by virtue of its rate-dependent properties. Cell clusters isolated from the rabbit atrioventricular (AV) node beat with a stable rhythm (cycle length: 300-520 ms) and are characterized by slow action potential upstroke velocities (7 to 30 V/s). The goal of this study is to better characterize the phase resetting and the rhythms during periodic stimulation of this slow inward current system. Single or periodic depolarizing pulses (20 ms in duration) were injected into AV nodal cell clusters using glass microelectrodes. Phase resetting curves of both strong, weak as well as discontinuous types were obtained by applying single current pulses of different intensities and latencies following every ten action potentials. Graded responses were elicited in a wide range of stimulus phases and amplitudes. A single premature stimulus caused a transient prolongation of the cycle length. Sustained periodic stimulation, at rates faster than the intrinsic beat rate, resulted in various N:M (stimulus frequency: action potential frequency) entrainment rhythms as well as periodic or irregular changes in action potential morphology. The changes in action potential characteristics were evaluated by computing the area under the action potential trace and above a fixed threshold (-45 mV). We show that the variations in action potential morphology play a major role in the onset of complicated dynamics observed in this experimental preparation. In this context, the prediction of entrainment rhythms using techniques based on the iteration of phase resetting curves (PRCs) is inadequate since the PRC does not carry information directly related to the changes in action potential morphology. This study demonstrates the need to consider graded events which, though not propagated, have important implications in the understanding of dynamical diseases of the heart. (c) 1995 American Institute of Physics.  相似文献   

11.
The problems of the electric field action on carbon nanotubes (CNTs) during their growth and under the electron field emission conditions are considered. The relations determining the growth rate of an extended structure under the action of the electric field are established. The relation connecting the angle of orientation of a CNT inclined to the substrate surface and the applied electric field is used for computing current-voltage characteristics of the cathode consisting of inclined CNTs. The degree of deviation of these characteristics from the Fowler-Nordheim classic dependence is determined, on the one hand, by the parameters characterizing the CNT spread over the angles of inclination and, on the other hand, by the value of the Young modulus characterizing the bending stiffness of a nanotube. It is shown that in zero external electric field, a certain effect on the CNT orientation can be produced by the CNT potential relative to the substrate, which is due to the effect of the contact potential difference.  相似文献   

12.
We suggest a closed form expression for the path integral of quantum transition amplitudes. We introduce a quantum action with parameters different from the classical action. We present numerical results for the harmonic oscillator with weak perturbation, the quartic potential, and the double well potential. The quantum action is relevant for quantum chaos and quantum instantons.  相似文献   

13.
We study the unwinding of DNA by helicase proteins as a representative system in which a motor protein interacts with a mobile obstacle. In our discrete model, the interaction between the helicase and the DNA fork is characterized by an interaction potential. For the case of a hard-wall potential, the helicase opens the DNA by rectifying thermal fluctuations which spontaneously open base pairs. A potential with nonzero range describes the destabilization of the double strand by the enzymatic action of the helicase. We derive solutions for the opening speed as a function of the potential shape and relate our results to experiments on helicase motion.  相似文献   

14.
We compare analytic predictions of non-Hermitian chiral random matrix theory with the complex Dirac operator eigenvalue spectrum of two-color lattice gauge theory with dynamical fermions at nonzero chemical potential. The Dirac eigenvalues come in complex conjugate pairs, making the action of this theory real and positive for our choice of two staggered flavors. This enables us to use standard Monte Carlo simulations in testing the influence of the chemical potential and quark mass on complex eigenvalues close to the origin. We find excellent agreement between the analytic predictions and our data for two different volumes over a range of chemical potentials below the chiral phase transition. In particular, we detect the effect of unquenching when going to very small quark masses.  相似文献   

15.
We study the quantization of the Einstein-Hilbert action for a small true vacuum bubble without matter or scalar field. The quantization of action induces an extra term of potential called quantum potential in Hamilton-Jacobi equation, which gives expanding solutions, including the exponential expansion solutions of the scalar factor a for the bubble. We show that exponential expansion of the bubble continues with a short period, no matter whether the bubble is closed, flat, or open. The exponential expansion ends spontaneously when the bubble becomes large, that is, the scalar factor a of the bubble approaches a Planck length lp. We show that it is the quantum potential of the small true vacuum bubble that plays the role of the scalar field potential suggested in the slow-roll inflation model. With the picture of quantum tunneling, we calculate particle creation rate during inflation, which shows that particles created by inflation have the capability of reheating the universe.  相似文献   

16.
We consider the density matrices that arise in the statistical mechanics of the electron-phonon systems. In the path integral representation the phonon coordinates can be eliminated. This leads to an action that depends on pairs of points on a path, that depends explicitly on time differences, and that contains the phonon occupation numbers. The integral is reduced to a standard form by scaling to the thermal length. We use the technique of integration by parts and add specially chosen generating functionals to the action. We set down functional derivative equations for the source-dependent density matrix and for the mass operator. This allows us to develop a series of approximations for the operator in terms of exact propagators. The crudest approximation is a coherent potential approximation applicable at a general temperature.  相似文献   

17.
The chiral phase transition in QCD at finite chemical potential and temperature can be characterized for small chemical potential by its curvature and the transition temperature. The curvature is accessible to QCD lattice simulations, which are always performed at finite pion masses and in finite simulation volumes. We investigate the effect of a finite volume on the curvature of the chiral phase transition line. We use functional renormalization group methods with a two flavor quark-meson model to obtain the effective action in a finite volume, including both quark and meson fluctuation effects. Depending on the chosen boundary conditions and the pion mass, we find pronounced finite-volume effects. For periodic quark boundary conditions in spatial directions, we observe a decrease in the curvature in intermediate volume sizes, which we interpret in terms of finite-volume quark effects. Our results have implications for the phase structure of QCD in a finite volume, where the location of a possible critical endpoint might be shifted compared to the infinite-volume case.  相似文献   

18.
任国栋  武刚  马军  陈旸 《物理学报》2015,64(5):58702-058702
神经元在自突触作用下可以诱发各类放电活动的迁移, 神经元动作电位对电自突触的响应比较敏感. 通常用包含延迟因子和增益的反馈回路电流来刻画自突触对神经元动作电位的影响. 基于Pspice软件, 设计了包含自突触效应的神经元电路, 用以延迟反馈电路来模拟电自突触对电位的调制作用. 研究结果发现: 1)在外界刺激和电自突触回路协同作用下, 神经元电路输出信号可以呈现静息态, 尖峰放电, 簇放电状态. 2)在时变增大的外界刺激下和自突触回路驱动下, 神经元电路的输出电位序列在多种电活动模式之间(静息, 尖峰放电, 簇放电)交替出现, 其机理在于自突触回路具有记忆特性, 神经元对于不同的外界刺激可以做出不同模式的响应. 3)在给定比较大外界刺激下, 改变反馈回路的增益, 发现电路输出的序列也可以呈现不同模式交替, 即神经元对于相同的刺激可以通过自我调节自突触增益来产生不同模式的响应, 其机理可能在于回路的有效反馈, 这有助于理解突触的可塑性.  相似文献   

19.
Recent studies of cortical neurons driven by fluctuating currents revealed cutoff frequencies for action potential encoding of several hundred Hz. Theoretical studies of biophysical neuron models have predicted a much lower cutoff frequency of the order of average firing rate or the inverse membrane time constant. The biophysical origin of the observed high cutoff frequencies is thus not well understood. Here we introduce a neuron model with dynamical action potential generation, in which the linear response can be analytically calculated for uncorrelated synaptic noise. We find that the cutoff frequencies increase to very large values when the time scale of action potential initiation becomes short.  相似文献   

20.
We discuss a model of both the classical and the integer quantum Hall effect which is based on a semiclassical Schrödinger-Chern-Simons action, where the Ohm equations result as equations of motion. The quantization of the classical Chern-Simons part of action under typical quantum Hall conditions results in the quantized Hall conductivity. We show further that the classical Hall effect is described by a theory which arises as the classical limit of a theory of the quantum Hall effect. The model also explains the preference and the domain of the edge currents on the boundary of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号