首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the existence and stability of two-dimensional discrete breathers in a two-dimensionai discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling. Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive) and the center of the two-dimensional gap breathers (on a light or a heavy atom).  相似文献   

2.
XU Quan  TIAN Qiang 《中国物理快报》2008,25(10):3586-3589
We study the existence of two-dimensional discrete breathers in a two-dimensional face-centred square lattice consisting of alternating light and heavy atoms, with nearest-neighbour coupling containing quartic soft or hardnonlinearity. This study is focused on two-dimensional breathers with frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of existence of two-dimensional gap breathers by using the numerical method, the local anharmonicity approximation and the rotating wave approximation. We obtain six types of two-dimensional gap breathers, i.e., symmetric, mirror-symmetric and asymmetric, no matter whether the centre of the breather is on a light or a heavy atom.  相似文献   

3.
吕彬彬  田强 《中国物理 B》2009,18(10):4393-4406
In this paper we study the existence and stability of two-dimensional discrete gap breathers in a two-dimensional diatomic face-centered square lattice consisting of alternating light and heavy atoms, with on-site potential and coupling potential. This study is focused on two-dimensional breathers with their frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of the existence of two-dimensional gap breathers by using a numerical method. Six types of two-dimensional gap breathers are obtained, i.e., symmetric, mirror-symmetric and asymmetric, whether the center of the breather is on a light or a heavy atom. The difference between one-dimensional discrete gap breathers and two-dimensional discrete gap breathers is also discussed. We use Aubry's theory to analyze the stability of discrete gap breathers in the two-dimensional diatomic face-centered square lattice.  相似文献   

4.
Two-dimensional discrete breathers in a two-dimensional Morse lattice with on-site harmonic potentials are investigated. Under the harmonic approximation, the linear dispersion relations for the triangular and the square lattices are discussed. The existence of discrete breathers in a two-dimensional Morse lattice with on-site harmonic potentials is proved by using local inharmonic approximation and the numerical method. The localization and amplitude of two-dimensional discrete breathers correlate closely to the Morse parameter a and the on-site parameter κ.  相似文献   

5.
吕彬彬  邓艳平  田强 《中国物理 B》2010,19(2):26302-026302
Under harmonic approximation, this paper discusses the linear dispersion relation of the one-dimensional chain. The existence and evolution of discrete breathers in a general one-dimensional chain are analysed for two particular examples of soft (Morse) and hard (quartic) on-site potentials. The existence of discrete breathers in one-dimensional and two-dimensional Morse lattices is proved by using rotating wave approximation, local anharmonic approximation and a numerical method. The localization and amplitude of discrete breathers in the two-dimensional Morse lattice with on-site harmonic potentials correlate closely to the Morse parameter a and the on-site parameter к.  相似文献   

6.
徐权  田强 《中国物理 B》2009,18(6):2469-2474
We study a two-dimensional (2D) diatomic lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers (DBs) can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the 2D discrete diatomic Klein--Gordon lattice with hard and soft on-site potentials. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers (QDBs) and chaotic discrete breathers (CDBs) by changing the amplitude of the driver. But the DBs and QDBs with symmetric and anti-symmetric profiles that are centered at a heavy atom are more stable than at a light atom, because the frequencies of the DBs and QDBs centered at a heavy atom are lower than those centered at a light atom.  相似文献   

7.
We investigate the collisions of moving breathers, with the same frequency, in three different Klein-Gordon chains of oscillators. The on-site potentials are: the asymmetric and soft Morse potential, the symmetric and soft sine-Gordon potential and the symmetric and hard φ4 potential. The simulation of a collision begins generating two identical moving breathers traveling with opposite velocities, they are obtained after perturbing two identical stationary breathers which centers are separated by a fixed number of particles. If this number is odd we obtain an on-site collision, but if this number is even we obtain an inter-site collision. Apart from this distinction, we have considered symmetric collisions, if the colliding moving breathers are vibrating in phase, and anti-symmetric collisions, if the colliding moving breathers are vibrating in anti-phase. The simulations show that the collision properties of the three chains are different. The main observed phenomena are: breather generation with trapping, with the appearance of two new moving breathers with opposite velocities, and a stationary breather trapped at the collision region; breather generation without trapping, with the appearance of new moving breathers with opposite velocities; breather trapping at the collision region, without the appearance of new moving breathers; and breather reflection. For each Klein-Gordon chain, the collision outcomes depend on the lattice parameters, the frequency of the perturbed stationary breathers, the internal structure of the moving breathers and the number of particles that initially separates the stationary breathers when they are perturbed.  相似文献   

8.
We study a one-dimensional Sine–Gordon lattice of anharmonic oscillators with cubic and quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the one-dimensional Sine–Gordon lattice no matter whether the nonlinear interaction is cubic or quartic. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.  相似文献   

9.
We study a one-dimensional Sine-Gordon lattice of anharmonic oscillators with cubic and quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the one-dimensional Sine-Gordon lattice no matter whether the nonlinear interaction is cubic or quartic. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.  相似文献   

10.
《Physics Reports》1998,295(5):181-264
Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurrence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices — quantum breathers.Finally we will formulate a new conceptual approach capable of predicting whether discrete breathers exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.  相似文献   

11.
徐海清  唐翌 《中国物理快报》2006,23(6):1544-1547
The system consisting of a chain of parametrically driven and damped nonlinear coupled pendula with a mass impurity is studied by means of a discrete version of the envelope function approach. An analogue of the parametrically driven damped nonlinear Schodinger equation with an impurity term is derived from the original lattice equation. Analytical solutions of impurity pinned high-frequency breathers and kinks are obtained. The results show that the mass impurity has striking influence on the high-frequency modes. In addition, we perform numerical simulations, showing that the light mass impurity has a stabilizing effect on the chain. The breathers seeding chaos in the homogeneous chain are pinned on a suitable light impurity to pull the chain from the chaotic state.  相似文献   

12.
We study the dynamics of the discrete nonlinear Schr?dinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this non-Gibbsian state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather. Received 21 January 1999 and Received in final form 20 September 1999  相似文献   

13.
Symmetric collisions of two discrete breathers in the lattice with saturable nonlinearity are investigated. The strong correlation of the collision properties and the parameters of colliding breathers (power, velocity, and phase difference), lattice parameters and position of the collision point is found. This is related to the internal structure of the colliding breathers and energy exchange with the phonon background. The type of collision changes from elastic to the inelastic (the breathers merging, multi-bounce interactions, breather creation etc.) with the increasing of the colliding breather power. Collision of high power breathers always results in the breather fusion. The elastic and inelastic collisions are related to the periodic and quasi-periodic colliding breathers, respectively.  相似文献   

14.
We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for two- dimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete two- dimensional monatomic β-FPU lattice.  相似文献   

15.
We study the collisions of moving breathers with the same frequency, traveling with opposite directions within a Klein-Gordon chain of oscillators. Two types of collisions have been analyzed: symmetric and non-symmetric, head-on collisions. For low enough frequency the outcome is strongly dependent of the dynamical states of the two colliding breathers just before the collision. For symmetric collisions, several results can be observed: breather generation, with the formation of a trapped breather and two new moving breathers; breather reflection; generation of two new moving breathers; and breather fusion bringing about a trapped breather. For non-symmetric collisions some possible results are: breather generation, with the formation of three new moving breathers; breather fusion, originating a new moving breather; breather trapping with breather reflection; generation of two new moving breathers; and two new moving breathers traveling as a bound state. Breather annihilation has never been observed.  相似文献   

16.
The excitation of solitons and discrete breathers (pinned or otherwise, also known asintrinsic localized modes, DB/ILM) in a one-dimensional lattice, also denoted as a chain,is considered when both on-site and inter-site vibrations, coupled together, are governedby the empirical Morse interaction. We focus attention on the transformation of the formerinto the latter as the relative strength of the on-site potential to that of theinter-site potential is increased.  相似文献   

17.
徐权  田强 《中国物理 B》2008,17(12):4614-4618
This paper studies a discrete one-dimensional monatomic Klein--Gordon chain with only quartic nearest-neighbor interactions, in which the compact-like discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. Introducing the trying method, it proves that compact-like discrete breathers exist in this nonlinear system. It also discusses the linear stability of the compact-like discrete breathers, when the coefficient (β) of quartic on-site potential and the coupling constant (K4) of quartic interactive potential satisfy the given conditions, they are linearly stable.  相似文献   

18.
Moving nonlinear localized vibrational modes (i.e. discrete breathers) for the one-dimensional homogenous lattice with quartic anharmonicity are obtained analytically by means of a semidiscrete approximation plus an integration. In addition to the pulse-envelope type of moving modes which have been found previously both analytically and numerically, we find that a kink-envelope type of moving mode which has not been reported before can also exist for such a lattice system. The two types of modes in both right- and left-moving form can occur with different carrier wavevectors and frequencies in separate parts of the plane. Numerical simulations are performed and their results are in good agreement with the analytical predictions. Received 13 October 1999 and Received in final form 15 May 2000  相似文献   

19.
Nonlinear classical Hamiltonian lattices exhibit generic solutions — discrete breathers. They are time-periodic and (typically exponentially) localized in space. The lattices have discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. We will introduce the concept of these localized excitations and review their basic properties including dynamical and structural stability. We then focus on advances in the theory of discrete breathers in three directions — scattering of waves by these excitations, persistence of discrete breathers in long transient processes and thermal equilibrium, and their quantization. The second part of this review is devoted to a detailed discussion of recent experimental observations and studies of discrete breathers, including theoretical modelling of these experimental situations on the basis of the general theory of discrete breathers. In particular we will focus on their detection in Josephson junction networks, arrays of coupled nonlinear optical waveguides, Bose–Einstein condensates loaded on optical lattices, antiferromagnetic layered structures, PtCl based single crystals and driven micromechanical cantilever arrays.  相似文献   

20.
The dynamics of different kinds of discrete breathers in three types of one-dimensional monatomic chains with on-site and inter-site potentials are investigated. The existence and evolution of symmetric breather, antisymmetric breather, and multibreather in one-dimensional models are proved by using rotating wave approximation, local anharmonic approximation, and the numerical method. The linear stability of these breathers is investigated by using Lyapunov stable analysis. The localization and stability of breathers in three types of models correlate closely to the system nonlinear parameter β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号