首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Snow is a sound absorbing porous sintered material composed of solid matrix of ice skeleton with air (+water vapour) saturated pores. Investigation of snow acoustic properties is useful to understand the interaction between snow structure and sound waves, which can be further used to devise non-destructive way for exploring physical (non-acoustic) properties of snow. The present paper discusses the experimental measurements of various acoustical properties of snow such as acoustic absorption coefficient, surface impedance and transmission losses across different snow samples, followed by inverse characterization of different geometrical parameters of snow. The snow samples were extracted from a natural snowpack and transported to a nearby controlled environmental facility at Patsio, located in the Great Himalayan range of India. An impedance tube system (ITS), working in the frequency range 63–6300 Hz, was used for acoustic measurements of these snow samples. The acoustic behaviour of snow was observed strongly dependent upon the incident acoustic frequency; for frequencies smaller than 1 kHz, the average acoustic absorption coefficient was found below than 0.4, however, for the frequencies more than 1 kHz it was found to be 0.85. The average acoustic transmission loss was observed from 1.45 dB cm−1 to 3.77 dB cm−1 for the entire frequency range. The real and imaginary components of normalized surface impedance of snow samples varied from 0.02 to 7.77 and −6.05 to 5.69, respectively. Further, the measured acoustic properties of snow were used for inverse characterization of non-acoustic geometrical parameters such as porosity, flow resistivity, tortuosity, viscous and thermal characteristic lengths using the equivalent fluid model proposed by Johnson, Champoux and Allard (JCA). Acoustically derived porosity and flow resistivity were also compared with experimentally measured values and good agreement was observed between them.  相似文献   

2.
3.
A model describing the frequency dependence of backscatter coefficient from trabecular bone is presented. Scattering is assumed to originate from the surfaces of trabeculae, which are modeled as long thin cylinders with radii small compared with the ultrasonic wavelength. Experimental ultrasonic measurements at 500 kHz, 1 MHz, and 2.25 MHz from a wire target and from trabecular bone samples from human calcaneus in vitro are reported. In both cases, measurements are in good agreement with theory. For mediolateral insonification of calcaneus at low frequencies, including the typical diagnostic range (near 500 kHz), backscatter coefficient is proportional to frequency cubed. At higher frequencies, the frequency response flattens out. The data also suggest that at diagnostic frequencies, multiple scattering effects on the average are relatively small for the samples investigated. Finally, at diagnostic frequencies, the data suggest that absorption is likely to be a larger component of attenuation than scattering.  相似文献   

4.
Active technologies can enable room acoustic diffusers to operate over a wider bandwidth than passive devices, by extending the bass response. Active impedance control can be used to generate surface impedance distributions which cause wavefront dispersion, as opposed to the more normal absorptive or pressure-cancelling target functions. This paper details the development of two new types of active diffusers which are difficult, if not impossible, to make as passive wide-band structures. The first type is a maximum length sequence diffuser where the well depths are designed to be frequency dependent to avoid the critical frequencies present in the passive device, and so achieve performance over a finite-bandwidth. The second is a Bessel diffuser, which exploits concepts developed for transducer arrays to form a hybrid absorber–diffuser. Details of the designs are given, and measurements of scattering and impedance used to show that the active diffusers are operating correctly over a bandwidth of about 100 Hz to 1.1 kHz. Boundary element method simulation is used to show how more application-realistic arrays of these devices would behave.  相似文献   

5.
Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n = 484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours.  相似文献   

6.
《Journal of sound and vibration》2004,269(3-5):1031-1062
A high bandwidth powered resonance tube (PRT) actuator potentially useful for noise and flow control applications was developed. High bandwidth allows use of the same actuator at various locations on an aircraft and over a range of flight speeds. The actuator selected for bandwidth enhancement was the PRT actuator, which is an adaptation of the Hartmann whistle. The device is capable of producing high-frequency and high-amplitude pressure and velocity perturbations for active flow control applications. Our detailed experiments aimed at understanding the PRT phenomenon are complemented by an improved analytical model and direct numerical simulations. We provide a detailed characterization of the unsteady pressures in the nearfield of the actuator using phase averaged pressure measurements. The measurements revealed that propagating fluctuations at 9 kHz were biased towards the upstream direction (relative to the supply jet). A complementary computational study validated by our experiments was useful in simulating the details in the region between the supply jet and the resonance tube where it was difficult to gather experimental data. High bandwidth was obtained by varying the depth of the resonance tube that determines the frequency produced by the device. Our actuator could produce frequencies ranging from 1600 to 15,000 Hz at amplitudes as high as 160 dB near the source. The frequency variation with depth is predicted well by the quarter wavelength formula for deep tubes but the formula becomes increasingly inaccurate as the tube depth is decreased. An improved analytical model was developed, in which the compliance and mass of the fluid in the integration slot is incorporated into the prediction of resonance frequencies of the system. Finally a feedback controller that varied both the resonance tube depth and spacing to converge on a desired frequency was developed and demonstrated. We are optimistic that numerous potential applications exist for such high bandwidth high dynamic range actuators.  相似文献   

7.
Rayleigh waves measurements are used to characterise cover concrete and mortar in the frequency range 60–180 kHz. At these frequencies, the wavelength is comparable to the size of the aggregates, and waves propagate in a multiple scattering regime. Acquired signals are then difficult to interpret due to an important incoherent part. The method proposed here is the study of the coherent waves, obtained by averaging signals over several configurations of disorder. Coherent waves give information on an equivalent homogeneous medium. To acquire a large amount of measurements with accuracy, an optimised piezoelectric source is used with a laser interferometer for reception. Adapted signal processing technique are presented to evaluate the coherent phase and group velocities and also the coherent attenuation parameter. The sensitivity of these three parameters with the properties of concrete is discussed, as well as the necessity to use coherent waves to obtain accurate results.  相似文献   

8.
Lateralization of narrow bands of noise was investigated while varying interaural temporal disparity (ITD), center frequency, and bandwidth, utilizing an acoustic pointing task. Stimuli were narrow bands of noise centered at octave intervals between 500 Hz and 4 kHz with bandwidths ranging from 50-400 Hz. In a second experiment, lateralization for bands of noise and sinusoidally amplitude-modulated (SAM) tones, whose spectral content was constrained to be no lower than 3.8 kHz, was assessed. Overall, relatively large extents of laterality were obtained from all four listeners for ITDs of low-frequency bands of noise. Increasing the bandwidth of these noises did not yield consistent changes in the extent of laterality across ITDs and listeners. Most targets centered at high frequencies were lateralized near the midline. However, three of the four listeners did exhibit rather large displacements of the intracranial image when the bandwidth of the high-frequency noises was 400 Hz or greater. Interestingly, ITDs within high-frequency SAM tones were relatively ineffective. Thus, it appears that ITDs of relatively wide-band, high-frequency stimuli can mediate rather substantial extents of laterality. However, these effects are highly listener-dependent.  相似文献   

9.
This work focuses on the effect of phosphate modification on the magnetic and surface properties of iron-phenolic soft magnetic composite materials. Fourier transform infrared (FTIR) spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. Magnetic measurements show that phosphating treatment decreases the loss factor, imaginary part of permeability, increases the electrical resistivity and operating frequencies by decreasing the effective particle size. The operating frequency increases from 200 kHz for uncoated-powders samples to 1 MHz for phosphated-powders samples at optimum concentration. Phosphated iron powders that are covered by 0.7 wt% of phenolic resin exhibits lower magnetic loss and higher frequency stability. The minimum loss factor and maximum permeability at each frequency can be obtained for 0.01 g/ml orthophosphoric acid concentration in comparison with other concentrations including 0.005 and 0.04 g/ml.  相似文献   

10.
In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.  相似文献   

11.
High-frequency broadband (120-600 kHz) acoustic backscattering measurements have been made in the vicinity of energetic internal waves. The transducers on the backscattering system could be adjusted so as to insonify the water-column either vertically or horizontally. The broadband capabilities of the system allowed spectral classification of the backscattering. The distribution of spectral shapes is significantly different for scattering measurements made with the transducers oriented horizontally versus vertically, indicating that scattering anisotropy is present. However, the scattering anisotropy could not be unequivocally explained by either turbulent microstructure or zooplankton, the two primary sources of scattering expected in internal waves. Daytime net samples indicate a predominance of short-aspect-ratio zooplankton. Using zooplankton acoustic scattering models, a preferential orientation of the observed zooplankton cannot explain the measured anisotropy. Yet model predictions of scattering from anisotropic turbulent microstructure, with inputs from coincident microstructure measurements, were not consistent with the observations. Possible explanations include bandwidth limitations that result in many spectra that cannot be unambiguously attributed to turbulence or zooplankton based on spectral shape. Extending the acoustic bandwidth to cover the range from 50?kHz to 2?MHz could help improve identification of the dominant sources of backscattering anisotropy.  相似文献   

12.
This paper investigates the effect of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites (50 Hz-1000 kHz). The results showed that the optimum amount of phenolic resin to attain maximum permeability and minimum loss factor at 10 kHz is 0.7 wt% for samples containing iron powder with average particle size ∼150 μm compacted at 800 MPa. In accordance with this resin content, at high frequencies (>300 kHz), the sample with lower particle size ∼10 μm exhibits higher magnetic permeability, higher operating frequencies and lower imaginary part of permeability. With increase in the compaction pressure, specific resistivity decreases and imaginary and real parts of permeability increase at low frequencies.  相似文献   

13.
Sound propagation in water-saturated granular sediments is known to depend on the sediment porosity, but few data in the literature address both the frequency and porosity dependency. To begin to address this deficiency, a fluidized bed technique was used to control the porosity of an artificial sediment composed of glass spheres of 265 μm diameter. Time-of-flight measurements and the Fourier phase technique were utilized to determine the sound speed for frequencies from 300 to 800 kHz and porosities from 0.37 to 0.43. A Biot-based model qualitatively describes the porosity dependence.  相似文献   

14.
Forward- and simultaneous-masked thresholds were measured at 0.5 and 2.0 kHz in bandpass maskers as a function of masker bandwidth and in a broadband masker with the goal of estimating psychophysical suppression. Suppression was operationally defined in two ways: (1) as a change in forward-masked threshold as a function of masker bandwidth, and (2) as a change in effective masker level with increased masker bandwidth, taking into account the nonlinear growth of forward masking. Subjects were younger adults with normal hearing and older adults with cochlear hearing loss. Thresholds decreased as a function of masker bandwidth in forward masking, which was attributed to effects of suppression; thresholds remained constant or increased slightly with increasing masker bandwidth in simultaneous masking. For subjects with normal hearing, slightly larger estimates of suppression were obtained at 2.0 kHz rather than at 0.5 kHz. For hearing-impaired subjects, suppression was reduced in regions of hearing loss. The magnitude of suppression was strongly correlated with the absolute threshold at the signal frequency, but did not vary with thresholds at frequencies remote from the signal. The results suggest that measuring forward-masked thresholds in bandlimited and broadband maskers may be an efficient psychophysical method for estimating suppression.  相似文献   

15.
Study of 1-3-2 type piezoelectric composite transducer array   总被引:2,自引:0,他引:2  
Li G  Wang LK  Luan GD  Zhang JD  Li SX 《Ultrasonics》2006,44(Z1):e673-e677
Based on a new structure of precise location and decoupling between the transducer elements, high frequency underwater transmission transducer arrays with 4 elements and 8 elements serried uniform linear array were studied, using novel 1-3-2 type piezoelectric composite as the sensing material. There are ceramic framework supports in the transverse and longitudinal directions in 1-3-2 type piezoelectric composite structure; the transducer is free from the influence of outside mechanical impact and the environment temperature change. Transducer and array samples have been designed, fabricated and measured. The resonant frequency is 150 kHz, resonant transmission response greater than 160 dB, and bandwidth is from 140 kHz to 160 kHz. The results indicate that, the transducer array has wide bandwidth, high sensitivity, stabile performance, and good coherence.  相似文献   

16.
The increasing presence of low frequency sources and the lack of acoustic standard measurement procedures make the extension of reverberation time measurements to frequencies below 100 Hz necessary. In typical ordinary rooms with volumes between 30 m3 and 200 m3 the sound field is non-diffuse at such low frequencies, entailing inhomogeneities in space and frequency domains. Presence of standing waves is also the main cause of bad quality of listening in terms of clarity and rumble effects. Since standard measurements according to ISO 3382 fail to achieve accurate and precise values in third octave bands due to non-linear decays caused by room modes, a new approach based on reverberation time measurements of single resonant frequencies (the modal reverberation time) has been introduced. From background theory, due to the intrinsic relation between modal decays and half bandwidth of resonant frequencies, two measurement methods have been proposed together with proper measurement procedures: a direct method based on interrupted source signal method, and an indirect method based on half bandwidth measurements. With microphones placed at corners of rectangular rooms in order to detect all modes and maximize SNRs, different source signals were tested. Anti-resonant sine waves and sweep signal turned out to be the most suitable for direct and indirect measurement methods respectively. From spatial measurements in an empty rectangular test room, comparison between direct and indirect methods showed good and significant agreements. This is the first experimental validation of the relation between resonant half bandwidth and modal reverberation time. Furthermore, comparisons between means and standard deviations of modal reverberation times and standard reverberation times in third octave bands confirm the inadequacy of standard procedure to get accurate and precise values at low frequencies with respect to the modal approach. Modal reverberation time measurements applied to furnished ordinary rooms confirm previous results in the limit of modal sound field: for highly damped modes due to furniture or acoustic treatment, the indirect method is not applicable due to strong suppression of modes and the consequent deviation of the acoustic field from a non-diffuse condition to a damped modal condition, while standard reverberation times align with direct method values. In the future, further investigations will be necessary in different rooms to improve uncertainty evaluation.  相似文献   

17.
We investigated the time variation of ultrasonic degassing for air-saturated water and degassed water with a sample volume of 100 mL at frequencies of 22, 43, 129, 209, 305, 400, 514, 1018, and 1960 kHz and ultrasonic power of 15 W. Ultrasonic degassing was evaluated by dissolved oxygen concentration. Ultrasonic degassing was also investigated at a frequency of 1018 kHz and ultrasonic powers of 5, 10, 15, and 20 W. The dissolved oxygen concentration varied with the ultrasonic irradiation time and became constant after prolonged ultrasonic irradiation. The constant dissolved oxygen concentration value depended on the frequency and ultrasonic power but not the initial dissolved oxygen concentration. The degassing rate at 101.3 kPa was higher in the frequency range of 200 kHz to 1 MHz. The frequency dependence of the degassing rate was almost the same as that of the sonochemical efficiency obtained by the potassium iodide (KI) method. Ultrasonic degassing in the frequency range of 22–1960 kHz was also investigated under reduced pressure of 5 kPa. Degassing was accelerated when ultrasonic irradiation was applied under reduced pressure. However, under a reduced pressure of 5 kPa, the lower the frequencies, the higher is the degassing rate. The sonochemical reaction rate was examined by the KI method for varying dissolved air concentrations before ultrasonic irradiation. Cavitation did not occur when the initial dissolved oxygen concentration was less than 2 mg·L−1. Therefore, the lower limit of ultrasonic degassing under 101.3 kPa equals 2 mg·L−1 dissolved oxygen concentration. A model equation for the time variation of dissolved oxygen concentration due to ultrasonic irradiation was developed, and the degassing mechanism was discussed.  相似文献   

18.
Accurate duct acoustic propagation models are required to predict and reduce aircraft engine noise. These models ultimately rely on measurements of the acoustic impedance to characterize candidate engine nacelle liners. This research effort increases the frequency range of normal-incidence acoustic impedance testing in square ducts by extending the standard two-microphone method (TMM), which is limited to plane wave propagation, to include higher-order modes. The modal decomposition method (MDM) presented includes four normal modes in the model of the sound field, thus increasing the bandwidth from 6.7 to 13.5 kHz for a 25.4 mm square waveguide. The MDM characterizes the test specimen for normal- and oblique-incident acoustic impedance and mode scattering coefficients. The MDM is first formulated and then applied to the measurement of the reflection coefficient matrix for a ceramic tubular specimen. The experimental results are consistent with results from the TMM for the same specimen to within the 95% confidence intervals for the TMM. The MDM results show a series of resonances for the ceramic tubular material exhibiting a monotonic decrease in the resonant peaks of the acoustic resistance with increasing frequency, resembling a rigidly-terminated viscous tube, and also evidence of mode scattering is visible at the higher frequencies.  相似文献   

19.
Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.  相似文献   

20.
Experiments have been performed on the roughness noise produced by a two-dimensional turbulent wall jet boundary layer flowing over short fetches of sandpaper roughness. A range of rough surface sizes were studied from hydrodynamically smooth through fully rough. Velocity measurements were made to document the form of the wall jet boundary layer and the influence of the roughness upon it. Acoustic measurements showed background noise levels to be very low so that the sound produced by the rough surfaces could be clearly detected with signal to noise ratios as large as 20 dB. Even hydrodynamically smooth roughness was found to produce noise, conclusively indicating the presence of scattering as a source mechanism. Variations of the roughness noise spectra with flow speed and roughness size are found to be inconsistent with any simple parameter scaling. Boundary layer wall pressure fluctuation measurements made within the roughness fetches reveal a spectral form quite different than the roughness noise, and fluctuation levels some 50-70 dB higher. Despite these differences the wall pressure and roughness noise are found to be very simply related, at least at lower frequencies (<6 kHz). The roughness noise spectrum varies closely as the product of the wall pressure spectrum, the frequency squared, and the mean-square roughness height. This is the scaling predicted by scattering theory and implies a major simplification to the problem of roughness noise prediction for stochastic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号