首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the output performances of the 1356 nm 4 F 3/2-4 I 13/2 transition (generally used for a 1319 nm transition) in Nd:YAG under in-band pumping with diode laser at the 809 nm wavelength. An end-pumped Nd:YAG crystal yielded 1.02 W of continuous-wave (CW) output power for 18.2 W of incident pump power. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 290 mW at 678 nm by using a LiB3O5 (LBO) nonlinear crystal. The red beam quality factor M 2 was less than 1.37. The red power stability was less 3.2% in 4 h.  相似文献   

2.
We demonstrate for the first time a Cr4+:YAG passively Q-switched 1066 nm pulse-burst laser under 879 nm direct pump with a novel Nd:Gd0.69Y0.3NbO4 crystal. The output laser characteristics with different pump repetition rates and different Cr4+:YAG initial transmission are studied. Without the Cr4+:YAG, we obtain a maximum output energy of 2.55 mJ at an absorbed pump energy of 5.79 mJ with the highest 48% slope efficiency. The pulse-burst laser contains a maximum of 7 pulses for a Cr4+:YAG initial transmission of 55% and a pump repetition rate of 1 kHz. The single-pulse energy and narrowest pulse width reach 160 μJ and 5.5 ns at 38.2 kHz, with a peak power of 32 kW.  相似文献   

3.
A passively Q-switched a-cut Nd:YVO4 self-stimulating Raman laser using a Cr:YAG saturable absorber has been demonstrated for the first time. The maximum average output power of the self-Raman laser at 1176 nm is 347 mW at the incident pump power of 10 W with a pulse repetition frequency (PRF) of 66 kHz. The pulse width, pulse energy of the 1176 nm are found to be 10 ns and 5.6 μJ. The conversion efficiency from diode laser input power to Raman output power is 3.47%.  相似文献   

4.
We describe the output performances of the 930 nm 4 F 3/24 I 9/2 transition in Nd3+:YAlO3 (Nd:YAP) under in-band pumping with diode laser at the 803 nm wavelength. An end-pumped Nd:YAP crystal yielded 1.13 W of continuous-wave (CW) output power for 17.8 W of incident pump power. Moreover, intracavity second-harmonic generation has also been achieved with a power of 172 mW at 465 nm by using a LiB3O5 (LBO) nonlinear crystal. The blue beam quality factor M 2 was less than 1.3. The blue power stability was less 3% in 60 min.  相似文献   

5.
We describe the output performances of the 928 nm 4 F 3/24 I 9/2 transition in Nd:CLNGG under diode-laser pumping. An end-pumped Nd:CLNGG crystal yielded 1.3 W of continuous-wave output power for 17.8 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 11.2%. Furthermore, with 17.8 W of diode pump power and the frequency-doubling crystal LiB3O5 (LBO), a maximum output power of 260 mW in the blue spectral range at 464 nm has been achieved. The blue output power stability over 4 h is better than 3.2%.  相似文献   

6.
We report a high repetition rate Q-switched Nd:YVO4/Cr4+:YAG micro laser with small pump power. Unwanted defects in pulse train, which are inherently large in passively Q-switched laser, was simply minimized by controlling temperature of Nd:YVO4/Cr4+:YAG medium. When T 0 = 90% Cr4+:YAG and R OC = 90% output coupler were used, Q-switched Nd:YVO4/Cr4+:YAG micro laser showed the optimum output; maximum output power of 58 mW, optical-to-optical efficiency of 9.1%, repetition rate of 1.1 MHz, and pulse width of 57 ns were achieved with 640 mW pumping. MHz-order repetition rate in Nd:YVO4/Cr4+:YAG Q-switched laser with low pumping (<1 W) is the highest value to the best of our knowledge.  相似文献   

7.
We report on the spectroscopy and, for the first time to our knowledge, continuous-wave and Q-switched diode-pumped laser operation of Er,Yb:YVO4 crystal. Absorption and emission spectra of the crystal were determined. Lifetimes of Er3+ 4 I 13/2 and 4 I 11/2 levels that define laser performance of the crystal were measured and parameters of energy transfer between Yb3+ and Er3+ ions were estimated. cw output power of 115 mW with slope efficiency of 5.4% was achieved at 1604 nm. In the Q-switched mode an average output power of 81 mW with slope efficiency of 3.5% and pulse duration of 150 ns was obtained. In quasi-cw regime maximal peak power of 610 mW with slope efficiency of 6.7% was demonstrated. PACS 42.55.Xi; 42.60.Gd; 42.70.Hj  相似文献   

8.
Y. Wu  G. Y. Jin  Y. Dong 《Laser Physics》2011,21(8):1378-1381
We report for the first time a continuous-wave (CW) blue-green radiation at 504 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1080 nm Nd:YAlO3 (Nd:YAP) laser. Using type-I critical phase matching LiB3O5 (LBO) crystal, 504 nm blue-green laser was obtained by 946 and 1080 nm intra-cavity sum-frequency mixing, and output power of 215 mW was demonstrated. At the output power level of 215 mW, the output power stability is better than 4.7% and laser beam quality M2 factor is 1.21.  相似文献   

9.
A high-power diode -pumped Nd3+:YAl3(BO3)4 (Nd:YAB) laser emitting at 1338 nm is described. At the incident pump power of 9.8 W, as high as 734 mW of continuous-wave (CW) output power at 1338 nm is achieved. The slope efficiency with respect to the incident pump power was 9.0%. To the best of our knowledge, this is the first demonstration of such a laser system. The output power stability over 60 min is better than 2.6%. The laser beam quality M 2 factor is 1.21.  相似文献   

10.
A passively Q-switched 1.06 μm laser with Cr4+:YAG saturable absorber by direct 879 nm diode pumping grown-together composite GdVO4/Nd:GdVO4 crystal to the emitting level was demonstrated in this paper. The characteristics of pulsed laser were investigated by using two kinds of Cr4+:YAG crystal with the initial transmissivity of 80 and 90%, respectively. When the T 0 = 90% Cr4+:YAG was used, an average output power of 1.59 W was achieved at an incident pump power of 10 W. The pulse width and repetition rate were 64.5 ns and 170 kHz, respectively. The thermal lens effect of laser crystal was analyzed.  相似文献   

11.
It is reported that efficient continuous-wave (CW) red laser generation at 670 nm in a LBO crystal at type-I phase matching direction performed with a diode-pumped Nd3+:YAlO3 (Nd:YAP) laser. With incident pump power of 15.6 W, output power of 273 mW at 670 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 273 mW, the output stability is better than 3.7%.  相似文献   

12.
Efficient and compact red laser output at 669 nm is generated by intracavity frequency doubling of a continuous-wave (CW) diode-pumped Nd:YAG laser at 1338 nm. With 16.9 W of diode pump power and the frequency-doubling crystal KTiOPO4 (KTP), a maximum output power of 582 mW in the red spectral range at 669 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 3.4%; the output power stability over 4 h is better than 3.6%. To the best of our knowledge, this is first work on intracavity frequency doubling of a diode pumped Nd:YAG laser at 669 nm.  相似文献   

13.
We describe the output performances of the 1073 nm 4 F 3/24 I 11/2 transition (generally used for a 1064 nm transition) in Nd3+:YAlO3 (Nd:YAP) under in-band pumping with diode laser at the 803 nm wavelength. An end-pumped Nd:YAP crystal yielded 390 mW of continuous-wave (CW) output power for 17.8 W of incident pump power. Moreover, intracavity second-harmonic generation has also been achieved with a power of 38 mW at 536 nm by using a LiB3O5 (LBO) nonlinear crystal. The green beam quality factor M 2 was less than 1.33. The blue power stability was less 3.5% in 4 h.  相似文献   

14.
We present for the first time a Nd:YVO4 laser emitting at 1064 nm intracavity pumped by a 916 nm diode-pumped Nd:LuVO4 laser. A 809 nm laser diode is used to pump the Nd:LuVO4 crystal emitting at 916 nm, a Nd:YVO4 laser crystal was pumped at 916 nm and lased at 1064 nm. Intracavity sum-frequency mixing at 916 and 1064 nm was then realized in a LiB3O6 (LBO) crystal to reach the blue range. We obtained a continuous-wave output power of 216 mW at 492 nm under 19.6 W of incident pump power at 809 nm.  相似文献   

15.
The polarized absorption spectra of Tm3+-doped potassium yttrium tungstate (Tm:KY(WO4)2) crystal at room temperature were measured. The emission spectrum and lifetime of the 3 F 4 excited state were determined. Using standard and modified Judd–Ofelt theories, the intensity parameters and the radiative lifetimes were calculated and good agreement with the experimental results was obtained for both theories. Continuous-wave laser operation in Tm:KYW crystal under laser diode pumping at 802 nm and 1750 nm was demonstrated with slope efficiency of 53% and 28% and output power of about 555 mW and 86 mW, respectively. PACS 42.55.Xi; 42.60.Pk; 42.70.Hj  相似文献   

16.
Intra-cavity sum frequency generation (SFG) of c-cut Nd:YVO4 self-Raman laser was investigated for the first time. A 4 × 4 × 10 mm3 KTP crystal with a type-II phase-matching cutting angle (θ = 83.4°, φ = 0°) was used for SFG between the fundamental light at 1066 nm and first-Stokes light at 1178 nm. The laser system with different curvature radii of output couplers and different pulse repetition frequencies were investigated. At a pump power of 14 W and pulse repetition frequency of 20 kHz, the average output power of yellow-green laser at 560 nm up to 840 mW was achieved, corresponding to a slope efficiency of 7.6% and a conversion efficiency of 6% with respect to diode pump power.  相似文献   

17.
X. H. Fu  Y. Che  Y. L. Li 《Laser Physics》2011,21(6):1021-1023
It is reported that efficient continuous-wave (CW) green laser generation at 540 nm in a KTP crystal at type-II phase matching direction performed with a diode-pumped Nd:CaYAlO4 laser. With incident pump power of 18.2 W, output power of 324 mW at 540 nm has been obtained using a 5 mm-long KTP crystal. At the output power level of 324 mW, the output stability is better than 2.8%. The beam quality M 2 values were equal to 1.34 and 1.22 in X and Y directions, respectively.  相似文献   

18.
Raman lasers based on c-Nd:YVO4 crystals can generate 1178 nm Stokes line, which can be frequency-doubled to realize 589 nm sodium lasers. We make comparative experimental studies of c-Nd:YVO4/YVO4 Raman lasers and c-Nd:YVO4 self-Raman lasers. About these two kinds of lasers, the output characteristics of power, center wavelength and beam quality are measured and compared.  相似文献   

19.
J. Ma  Y. Xu  P. Zhao  D. Liu 《Laser Physics》2010,20(8):1703-1706
Using a V3+:YAG saturable absorber, we realize the running of a laser-diode end-pumped passively Q-switched intracavity-frequency-doubling Nd:GdVO4/KTP red laser. Under the absorbed pump power of 9.45 W and with V3+:YAG initial transmission T 0 = 94%, the obtained average output power and pulse width were 610 mW and 15.09 ns with the repetition rate of 12.2 kHz, corresponding to the single pulse energy 50 μJ and the pulse peak power 3.34 kW.  相似文献   

20.
We report a diode-pumped Nd:LuVO4 laser emitting at 1076 nm, based on the 4 F 3/24 I 11/2 transition, generally used for a 1066 nm emission. A power of 689 mW at 1076 nm has been achieved in continuous-wave (CW) operation with a fiber-coupled laser diode emitting 17.8 W at 809 nm. Intracavity second-harmonic generation (SHG) in CW mode has also been demonstrated with a power of 105 mW at 538 nm by using a LiB3O5 (LBO) nonlinear crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号