首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 125 毫秒
1.
茶叶傅里叶近红外光谱(FTNIR)中含有茶叶的有机物化学成分信息,不同品种茶叶的化学成分和含量都有差异,所以利用傅里叶近红外光谱进行茶叶品种分类是可行的。由于茶叶近红外光谱数据具有维数高,有波峰和波谷,光谱重叠交错等特点,所以准确分类光谱数据存在困难。为此,提出一种可能模糊鉴别C均值聚类(PFDCM)算法,将模糊线性判别分析(FLDA)引入到可能模糊C均值聚类(PFCM)算法中,在模糊聚类过程中FLDA可提取茶叶近红外光谱的鉴别信息和进行数据空间的转换。PFDCM在对茶叶光谱进行模糊聚类后得到的模糊隶属度和典型值可实现茶叶近红外光谱的准确聚类,具有聚类速度快,准确率高等优点。由于PFDCM的典型值没有隶属度之和为1的约束条件,因而PFDCM在聚类含噪声的光谱数据方面优于模糊C均值聚类(FCM)。采集岳西翠兰,六安瓜片,施集毛峰和黄山毛峰四种茶叶共260个样本,采用AntarisⅡ型傅里叶近红外光谱仪采集茶叶的傅里叶近红外光谱。光谱波数范围为10 000~4 000 cm~(-1),实验所得近红外光谱为1 557维的高维数据。首先,将光谱数据用多元散射校正(MSC)进行预处理以减少光谱散射和噪声影响和增加信噪比;其次,用主成分分析法(PCA)降低光谱数据空间的维数,经过PCA处理后光谱数据维数为7;然后,用线性判别分析(LDA)提取光谱数据中的鉴别信息并将光谱数据空间的维数进一步降低到3维;最后,分别用FCM,可能模糊C均值聚类(PFCM)和PFDCM进行数据的聚类分析,实现茶叶品种的准确分类。实验结果:权重指数m=2.0,η=2.0, FCM, PFCM和PFDCM聚类算法的聚类准确率分别为93.60%, 93.02%和98.84%; FCM收敛时共迭代25次,而PFCM和PFDCM收敛时分别迭代8次和23次;模糊聚类收敛所消耗的时间, FCM最少,而PFDCM最多。FTNIR技术结合MSC, PCA, LDA和PFDCM提供了一种实现茶叶品种准确鉴别的分类模型。  相似文献   

2.
不同品种茶叶因其所含的有机化学成分不同,其效果也会有差别。所以,寻找出一种能准确迅速的鉴别茶叶品种的技术方法是非常重要的。近红外光谱(NIR)分析是一种无损检测技术,能很好的鉴别茶叶品种。使用NIR光谱仪采集茶叶的NIR数据。为了对包含噪声信号的茶叶近红外光谱进行准确鉴别,提出了一种模糊线性判别QR分析的新方法,可以对茶叶近红外光谱进行准确分类。通过使用模糊线性判别分析(FLDA)将由主成分分析(PCA)压缩的茶叶近红外光谱数据进行降维,由模糊线性判别分析得出的特征向量构建鉴别向量矩阵,对鉴别向量矩阵进行矩阵的QR分解,得到新的鉴别向量矩阵。经过模糊线性判别QR分析后使用K近邻算法进行分类,具有准确率高等优点。以岳西翠兰、六安瓜片、施集毛峰和黄山毛峰四种茶叶为研究样本,每类65个,茶叶样本总数为260个。采集茶叶近红外光谱数据的仪器为AntarisⅡ型傅里叶近红外光谱仪对光谱数据进行预处理,采用多元散射校正,由于采集到的茶叶光谱数据存在散射干扰。以此得到的近红外光谱数据的维数为1557维,通过主成分分析压缩数据集的维数,使得光谱数据集的维数达到7维。经压缩过后的光谱数据集中的鉴别信息再...  相似文献   

3.
模糊非相关鉴别C均值聚类的茶叶傅里叶红外光谱分类   总被引:1,自引:0,他引:1  
茶是一种让人喜爱的健康饮品,不同品种的茶叶其功效和作用是不相同的。研究出一种可靠、简单易行、分类速度快的茶叶品种鉴别方法具有重要的意义。在模糊非相关判别转换(FUDT)算法和模糊C均值聚类(FCM)算法的基础上提出了一种模糊非相关鉴别C均值聚类(FUDCM)算法。FUDCM可以在聚类过程中动态提取光谱数据的模糊非相关鉴别信息。用FTIR-7600型傅里叶红外光谱分析仪分别采集优质乐山竹叶青、劣质乐山竹叶青和峨眉山毛峰三种茶叶的傅里叶中红外光谱,波数范围为4 001.569~401.121 1 cm-1。先用多元散射校正(MSC)进行光谱预处理,然后用主成分分析法(PCA)将光谱数据降维到20维,再利用线性判别分析(LDA)提取光谱数据中的鉴别信息。最后分别运行FCM和FUDCM进行茶叶品种鉴别。实验结果表明:当权重指数m=2时,FCM的聚类准确率为63.64%,FUDCM的聚类准确率为83.33%;FCM经过67次迭代计算实现了收敛,而FUDCM仅需17次迭代计算就可以实现收敛。用傅里叶红外光谱技术结合主成分分析、线性判别分析和FUDCM的方法能快速、有效地实现茶叶品种的鉴别分析,且鉴别准确率比FCM更高。  相似文献   

4.
生菜的新鲜程度是影响生菜品质的最重要因素之一,其主要取决于生菜的储藏时间,因此,对不同储藏时间的生菜进行准确鉴别具有重要研究价值。由于不同储藏时间生菜的近红外光谱数据具有差异性的特点,因而使用近红外为不同储藏时间的生菜进行鉴别分类是可行的。通过将联合模糊C均值聚类(allied fuzzy c-means, AFCM)中的欧式距离测度替换为指数距离测度从而提出了一种GG联合模糊聚类(Gath-Geva AFCM, GGAFCM)分析算法。GGAFCM通过迭代计算得到模糊隶属度值和典型值,再结合近红外光谱实现了对不同存储时间生菜的高效精准鉴别。以新鲜的生菜样本作为研究对象,使用傅里叶近红外光谱仪(Antaris Ⅱ型)每隔12 h对生菜样本采集漫反射光谱数据,光谱的波数范围介于10 000~4 000 cm-1之间。首先,通过主成分分析(principal component analysis, PCA)对采集到的1 557维生菜近红外光谱数据进行数据压缩将其降至22维,然后通过模糊线性判别分析(fuzzy linear discriminant analysis, FLDA)对降维后的近红外漫反射光谱数据的鉴别信息进行提取。设定鉴别向量数为2,即通过FLDA将22维的生菜近红外光谱数据转换为了2维数据。最后将模糊C均值聚类(fuzzy c-means, FCM)的聚类中心作为GGAFCM和AFCM的初始聚类中心,通过运行FCM,GGAFCM和AFCM完成对不同储藏时间生菜的鉴别分类,并对三种模糊聚类算法得到的聚类准确率、模糊隶属度、迭代次数进行分析。实验结果表明:在初始化条件相同的情况下,采用的GGAFCM算法与FCM和AFCM算法相比具有更高的鉴别准确率。在m=2的情况下,GGAFCM的鉴别准确率达到了95.56%,而AFCM的聚类准确率为91.11%。GGAFCM迭代4次达到收敛,而AFCM与FCM均需要8次迭代计算才能达到收敛。基于近红外光谱技术,通过GGAFCM结合PCA与FLDA算法可以高效快速且无损的完成对储存时间不同的生菜的准确鉴别分类,为生菜储存时间的准确、快速鉴别提供了实验依据和参考方法,具有一定的实际应用价值。  相似文献   

5.
茶叶品种鉴别在茶叶的生产和销售中起着十分重要的作用。深入研究一种方法简单、易于操作、检测速度快的茶叶品种的鉴别方法,对于茶叶产品品种的鉴别有着十分重要的意义。利用红外光谱检测技术结合模糊聚类算法对茶叶品种进行快速鉴别是茶叶品种检测中最有效的和最实用的技术之一。为实现茶叶品种的快速分类,以快速广义噪声聚类(FGNC)为基础,提出一种新的广义噪声聚类(NGNC)。NGNC将FGNC目标函数中的欧式距离的平方扩展为欧式距离的p次方,提高了FGNC的聚类准确率。试验以优质乐山竹叶青、劣质乐山竹叶青和峨眉山毛峰三种茶叶为研究对象,采用FTIR-7600型傅里叶红外光谱仪检测茶叶样本的红外漫反射光谱。首先用主成分分析(PCA)对茶叶的高维红外光谱进行降维处理,然后用线性判别分析(LDA)进行茶叶光谱数据的品种类别信息的提取,最后分别运行FGNC和NGNC两种聚类算法进行茶叶红外光谱的聚类分析。实验结果表明,同FGNC相比较,NGNC具有更高的聚类准确率,更快的收敛速度和更逼近真实的聚类中心。总体而言,采用红外光谱技术检测茶叶样本,同时结合PCA,LDA和NGNC可实现快速、准确地聚类茶叶的红外光谱,能有效地实现茶叶品种的鉴别分析,为实现基于红外光谱和模糊聚类的茶叶品种鉴别分析提供了一种新方法和新思路。  相似文献   

6.
茶叶的品种不同,其有机化学成分含量往往不同,其功效也是不尽相同的,因此,研究出一种简单、高效、识别率高的茶叶品种鉴别技术方法是十分有必要的。中红外光谱技术是一种快速检测技术,在用中红外光谱仪采集得到的茶叶中红外光谱中含有噪声信号。为了对含噪声茶叶中红外光谱的准确分类以实现茶叶品种分类,将可能模糊C-均值聚类(PFCM)思想应用到K调和均值(KHM)聚类,设计出一种可能模糊K调和均值(PFKHM)聚类算法,计算出PFKHM的模糊隶属度、典型值和聚类中心。可能模糊K调和均值聚类能有效解决K调和均值聚类的噪声敏感性问题。用傅里叶红外光谱分析仪(FTIR-7600型)分别对三种茶叶(优质乐山竹叶青、劣质乐山竹叶青和峨眉山毛峰)进行扫描以获取它们的傅里叶中红外光谱。光谱波数区间是4 001.569~401.121 1 cm-1。先采用主成分分析法(PCA)将光谱数据压缩到20维,再采用线性判别分析(LDA)将光谱数据压缩到两维并提取鉴别特征信息。最后分别用K调和均值聚类和可能模糊K调和均值聚类实现茶叶品种分类。实验结果:当权重指数m=2,q=2和p=2时,KHM具有91.67%的聚类准确率,PFKHM聚类准确率达到94.44%;KHM迭代12次达到收敛,而PFKHM迭代11次就可以达到收敛。采用傅里叶红外光谱技术检测茶叶,用主成分分析和线性判别分析压缩光谱数据,再用可能模糊K调和均值聚类进行品种分类可快速、准确地实现茶叶品种的鉴别。  相似文献   

7.
食品的品种不同则其含有营养成分和功效存在差异,得到的傅里叶变换红外光谱也存在差异。为了准确的实现品种分类,设计了一种将傅里叶变换红外光谱与模糊聚类分析方法相结合的品种鉴别方法。在模糊Kohonen聚类网络(FKCN)基础上将模糊K调和聚类(FKHM)引入到Kohonen聚类网络的学习速率和更新策略中,提出了模糊K-Harmonic-Kohonen网络(FKHKCN)算法。FKHKCN利用模糊C均值(FCM)聚类的模糊隶属度计算其学习速率,以FKHM的聚类中心为基础通过推导计算得到FKHKCN的聚类中心,可以解决模糊Kohonen聚类网络方法对于初始类中心敏感而导致聚类结果不稳定的问题。FKHKCN作为一种模糊聚类算法,可实现傅里叶变换红外光谱数据的聚类分析。采用三种数据集:(1)采集产自四川的三种茶叶(优质和劣质的乐山竹叶青以及峨眉山毛峰)作为实验样本,样本总数为96。(2)两个品种(robusta和arabica)的咖啡样本。(3)三个品种(鸡肉、猪肉和火鸡)的肉类样本。首先对三个光谱数据集进行预处理,利用多元散射校正降低茶叶样本原始光谱数据集的散射影响,使用Savitzky-Gol...  相似文献   

8.
为解决模糊学习矢量量化(FLVQ)对噪声数据敏感问题,在无监督可能模糊聚类(UPFC)基础上提出一种无监督可能模糊学习矢量量化(UPFLVQ)算法。UPFLVQ用UPFC的隶属度和典型值来更新学习矢量量化网络的学习速率,计算类中心矢量。UPFLVQ 属于无监督机器学习算法,适用于无学习样本情况下的样本分类。研究了UPFLVQ用于近红外光谱生菜品种鉴别的可行性。采用FieldSpec@3型便携式光谱分析仪获取波长范围为350~2 500 nm的三种生菜样本的短波近红外光谱和长波近红外光谱,然后采用主成分分析(PCA)进行近红外光谱的维数压缩,取前三个主成分,累计可信度达97.50%,将2151维的近红外光谱压缩为三维数据。再运行模糊C-均值聚类(FCM)至迭代终止,并以FCM的类中心作为UPFLVQ的初始聚类中心,最后运行UPFLVQ得到隶属度和典型值以实现近红外光谱的生菜品种鉴别。同时,运行UPFC进行近红外光谱的生菜品种鉴别。实验结果表明:UPFLVQ和近红外光谱技术相结合的模型具有检测速度快,鉴别准确率高,对生菜不造成损坏等优点,可实现不同品种生菜的鉴别。UPFLVQ是将UPFC和FLVQ相结合的聚类算法,利用UPFLVQ建立近红外光谱的生菜品种鉴别模型时无需学习样本,适用于线性可分的数据聚类,为快速和无损地鉴别生菜品种提供了一种新的方法。  相似文献   

9.
生菜的储藏时间是影响生菜新鲜程度的重要因素。为了快速、无损和有效地鉴别生菜的储藏时间,以欧式距离的p次方代替模糊K调和均值聚类(FKHM)中欧式距离的平方提出了一种广义模糊K调和均值聚类(GFKHM)算法并将该算法应用于鉴别生菜的储藏时间。以60个新鲜生菜样本为研究对象,采用Antaris Ⅱ近红外光谱分析仪每隔12 h检测生菜的近红外漫反射光谱,共检测三次,光谱扫描的波数范围为10 000~4 000 cm-1。首先用主成分分析(PCA)对1 557维的生菜近红外光谱进行降维处理以减少冗余信息,取前20个主成分,经过PCA处理后得到20维的数据。然后用线性判别分析(LDA)提取光谱数据的鉴别信息以提高聚类的准确率,取鉴别向量数为2,则LDA将20维的数据转换为2维数据。最后以模糊C-均值聚类(FCM)的类中心作为FKHM和GFKHM的初始聚类中心,分别运行FKHM和GFKHM计算模糊隶属度以实现生菜储藏时间的鉴别。结果表明,GFKHM的鉴别准确率能达到92.5%,FKHM的鉴别准确率为90.0%,GFKHM具有比FKHM更高的鉴别准确率。GFKHM的聚类中心比FKHM更逼近真实类中心。GFKHM的收敛速度明显快于FKHM。采用近红外光谱技术同时结合GFKHM,PCA和LDA为快速和无损地鉴别生菜储藏时间提供了一种新的方法。  相似文献   

10.
红外光谱分析是基于分子振动与跃迁理论的鉴别物质化学组成的技术。得到的光谱数据常常具有较高的维数和重叠度,这给后续的数据处理带来困难。为此提出一种GK可能C均值聚类算法(GKIPCM),引入了GK聚类算法的马氏距离测度与改进的可能C均值聚类算法(IPCM)的模糊隶属度与聚类中心更新方程,使样本的距离测度具有自适应性且避免了聚类中心的一致性。GKIPCM算法具有分类精度更高,分类准确率对参数敏感性低的优点。将四组洗净白菜作为光谱分析对象,分别施加三种农药(高效氯氟氰菊酯)配比,采用安捷伦Cary 630 FTIR光谱仪采集白菜的傅里叶中红外光谱(FT-MIR)。首先对样本进行预处理,使用多元散射矫正(MSC)对光谱数据降噪,消除数据偏移量;其次,由于采集到的数据波数范围为4 300~590 cm-1,数据维数达到了971维,故使用主成分分析(PCA)对数据实现降维,降维后的数据维度减小到了23,且23个主成分的累积贡献率高达99.60%;但各类光谱的特征信息依然混杂在一起,故使用线性判别分析(LDA)提取特征鉴别信息,进一步将数据降至3维;最终,运行模糊C-均值聚类算法(FCM)得到较优初始聚类中心,使用GKIPCM算法对四类降维后的光谱数据进行聚类分析,并与GK聚类算法与IPCM聚类算法的运行结果作对比。GKIPCM算法的总迭代时长为0.218 8 s,分类准确率达到了97.22%。相较之下,GK算法与IPCM算法的准确率分别为63.89%和91.67%,运行的总时长为0.093 8与0.062 5 s。从实验结果可看出,GKIPCM算法可以通过分析光谱数据从而完成对不同程度农药残留进行定性分析的任务。  相似文献   

11.
基于FT-NIR的微生物快速鉴定方法研究   总被引:3,自引:0,他引:3  
微生物细胞的傅里叶变换近红外光谱(Fourier transform near infrared spectroscopy,FT-NIR)反映了细胞成分的分子振动信息,具有的高度特异性,为寻求一种基于FT-NIR的微生物快速鉴定方法提供了可能。文章通过采集1株酵母和5株细菌标准菌株的近红外漫反射光谱,采用主成分分析法对光谱数据进行了分析,构建了基于FT-NIR的微生物快速鉴定模型。分析结果表明:①光谱鉴别指数Dy1y2值范围为1.61±1.05~10.97±6.65,重现性良好;②建立的基于线性判别分析模型的鉴定准确率为100%,基于人工神经网络模型的预测结果平均相对误差为5.75%,预测准确率高。研究结果证实该方法可以实现基于FT-NIR结合多元数学统计方法的微生物快速鉴定,并具有广阔的产业应用前景。  相似文献   

12.
研究利用激光诱导击穿光谱技术结合化学计量学方法快速鉴别抹茶和绿茶粉的可行性。抹茶与绿茶粉的主要区别在于茶树品种、栽培管理、生长时间和加工工艺。通过采集不同厂家生产的抹茶和不同杀青方式制成的绿茶粉在230~880nm的激光诱导击穿光谱并进行归一化预处理后,选用主成分分析(PCA),依据X-variables loadings获取用于鉴别抹茶和绿茶粉的特征波长,并基于特征波长建立线性判别式分析(LDA)模型。结果表明:基于特征波长建立的LDA模型能快速鉴别抹茶和绿茶粉,4个特征波长分别属于C(Ⅰ) 247.94 nm,Mg(Ⅱ) 279.60 nm,Ca(Ⅱ) 393.45 nm和Fe(Ⅱ) 766.68 nm;建模集和预测集的判别正确率均达到100%。采用激光诱导击穿光谱技术可以准确鉴别不同厂家生产的抹茶和不同杀青方式制成的绿茶粉。  相似文献   

13.
旨在建立可靠的Fisher判别模型,以实现西洋参及其常见伪品饮片的快速、客观、准确鉴别,采用自组的凝视式光谱成像仪,对90份不同市售来源的中药材饮片(西洋参、人参、桔梗各30份)进行了荧光光谱成像实验,波长范围为400~720 nm,成像间隔为5nm。采用标准正态变量(SNV)变换对原的光谱数据进行预处理,以减少光谱数据中的噪声干扰。比较了主成分分析(PCA)与逐步判别分析(SDA)的原理特点及对模型的优化效果,联合这两种分析方法,首先,应用PCA对预处理后的光谱数据进行处理,使光谱数据中的主要信息集中分布在前面的主成分中,然后应用SDA从65个主成分中筛选出判别能力较强的12个主成分建立Fisher判别模型。由所建模型的两个判别函数作样品得分散点图,各类样品在图中表现出良好的聚类现象。以待判样品点与各种类中心点之间的欧氏距离作为依据,得出模型的准确判别结果。结果显示,所建Fisher判别模型在训练集和预测集中的判别正确率分别为98.33%和 96.67%,具有较高的可信度与准确度,因此,荧光光谱法结合Fisher判别分析可用于快速鉴别西洋参及其伪品饮片。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号