首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
A rapid and efficient treatment method, using periodate (PI) for sonochemical oxidation of persistent and bioaccumulative perfluorooctanoic acid (PFOA) was developed. With an addition of 45 mM PI, 96.5% of PFOA was decomposed with a defluorination efficiency of 95.7% after 120 min of ultrasound (US). The removals of PFOA were augmented with an increase in PI doses. In all the PI + US experimental runs, decomposition efficiencies were essentially similar to those of defluorination, indicating that PFOA was decomposed and mineralized into fluoride ions. Lower solution pHs resulted in an increase in decomposition and defluorination efficiencies of PFOA due to acid-catalyzation. Dissolved oxygen increased the amount of IO4 radicals produced, which consumed the more effective IO3 radicals. Consequently, presence of oxygen inhibited the destruction of PFOA. The PFOA degradation rates with different gases sparging are in the following order: nitrogen > air > oxygen. Effects of anions follow the Hofmeister effects on PFOA degradation (i.e., Br > none  Cl > SO42). Br could react with OH to yield radical anion Br2 that enhances the PFOA degradation. A reaction pathway was also proposed to describe the PI oxidation of PFOA under US irradiation.  相似文献   

2.
In the present work, the degradation of methomyl has been carried out by using the ultrasound cavitation (US) and its combination with H2O2, Fenton and photo-Fenton process. The study of effect of operating pH and ultrasound power density has indicated that maximum extent of degradation of 28.57% could be obtained at the optimal pH of 2.5 and power density of 0.155 W/mL. Application of US in combination with H2O2, Fenton and photo-Fenton process has further accelerated the rate of degradation of methomyl with complete degradation of methomyl in 27 min, 18 min and 9 min respectively. Mineralization study has proved that a combination of US and photo-Fenton process is the most effective process with maximum extent of mineralization of 78.8%. Comparison of energy efficiency and cost effectiveness of various processes has indicated that the electrical cost of 79892.34 Rs./m3 for ultrasonic degradation of methomyl has drastically reduced to 2277.00 Rs./m3, 1518.00 Rs./m3 and 807.58 Rs./m3 by using US in combination with H2O2, Fenton and photo-Fenton process respectively. The cost analysis has also indicated that the combination of US and photo-Fenton process is the most energy efficient and cost effective process.  相似文献   

3.
This study investigated the effects of sulfate ions on the decomposition of perfluorooctanoic acid (PFOA) by ultrasonic (US) irradiation at various pHs, sulfate doses, powers and temperatures. The removal of PFOA was augmented with an increased sulfate ion concentration, with PFOA being almost completely decomposed in 90 min at 25 °C with a sulfate dose of 117 mM. The two major mechanisms in the sulfate-assisted sonochemical system are the direct destruction of PFOA by cavitation and the indirect destruction of PFOA by sulfate free radicals. The decomposition of PFOA followed pseudo-first-order kinetics and was not influenced by pH. The reaction rate constants decreased with increases in temperature due to decreases in the surface tension of the solution.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(5):1875-1880
Perfluorooctanoic acid (PFOA) is a recalcitrant organic pollutant in wastewater because of its wide range of applications. Technologies for PFOA treatment have recently been developed. In this study, PFOA decomposition by sonochemical treatment was investigated to determine the effects of NaHCO3 concentrations, N2 saturation, and pH on decomposition rates and defluorination efficiencies. The results showed that PFOA decomposition by ultrasound treatment only (150 W, 40 kHz), with or without saturated N2, was <25% after 4 h reaction. The extent and rate of PFOA decomposition and defluorination efficiencies of PFOA, however, greatly increased with the addition of carbonate radical reagents. PFOA was completely decomposed after 4 h of sonochemical treatment with a carbonate radical oxidant and saturated N2. Without saturated N2, PFOA was also decomposed to a high (98.81%) degree. The highest PFOA decomposition and defluorination efficiencies occurred in N2 saturated solution containing an initial NaHCO3 concentration of 30 mM. Sonodecomposition of PFOA with CO3 radical was most favorable in a slightly alkaline environment (pH = 8.65). There isn’t any shorter-chain perfluorinated carboxylic acids detected except fluorine ions in final reaction solution.  相似文献   

5.
NdVO4 nanoparticles are successfully synthesized by efficient sonochemical method using two different structural directing agents like CTAB and P123. The phase formation and functional group analysis are carried out using X-ray diffraction (XRD) and fourier transform infra red (FT-IR) spectra, respectively. Using Scherrer equation the calculated grain sizes are 27 nm, 24 nm and 20 nm corresponding to NdVO4 synthesized by without surfactant, with CTAB and P123, respectively. The TEM images revealed that the shape of NdVO4 particles is rice-like and rod shaped particles while using CTAB and P123 as surfactants. The growth mechanism of NdVO4 nanoparticles is elucidated with the aid of TEM analysis. From electrical analysis, the conductivity of NdVO4 nanoparticles synthesized without surfactant showed a higher conductivity of 5.5703 × 10−6 S cm−1. The conductivity of the material depends on grain size and increased with increase in grain size due to the grain size effect. The magnetic measurements indicated the paramagnetic behavior of NdVO4 nanoparticles.  相似文献   

6.
Two things are needed for any technology to be suitable for use in the industry, viz. 1. Technical feasibility and 2. Economical feasibility. The use of ultrasound for waste water treatment has been shown to be technically feasible by numerous reports in the literature over the years. But there are hardly any exhaustive reports which address the issue of economical feasibility of the use of ultrasound for waste water treatment on industrial scale.Hence an attempt was made to estimate the cost for the waste water treatment using ultrasound. The costs have been calculated for 1000 L/min capacity treatment plant. The costs were calculated based upon the rate constants for pollutant degradation. The pollutants considered were phenol, trichloroethylene (TCE) and reactive azo dyes. Time required for ninety percent degradation of pollutant was taken as the residence time. The amount of energy required to achieve the target degradation was calculated from the energy density (watt/ml) used in the treatability study. The cost of treatment was calculated by considering capital cost and operating cost involved for the waste water treatment. Quotations were invited from vendors to ascertain the capital cost of equipments involved and operating costs were calculated based on annual energy usage. The cost was expressed in dollars per 1000 gallons of waste water treated. These treatment costs were compared with other established Advanced Oxidation Process (AOP) technologies. The cost of waste water treatment for phenol was in the range of $89 per 1000 gallons for UV/US/O3 to $15,536 per 1000 gallons for US alone. These costs for TCE were in the range of $25 per 1000 gallons to $91 for US + UV treatment and US alone, respectively. The cost of waste water treatment for reactive azo dyes was in the range of $65 per 1000 gallon for US + UV + H2O2 to $14,203 per 1000 gallon for US alone.This study should help in quantifying the economics of waste water treatment using ultrasound on industrial scale. We strongly believe that this study will immensely help the researchers working in the area of applications of ultrasound for waste water treatment in terms of where the technology stands today as compared to other available commercial AOP technologies. This will also help them think for different ways to improve the efficiency of using ultrasound or search for other ways of generating cavitation which may be more efficient and help reduce the cost of treatment in future.  相似文献   

7.
A hybrid advanced oxidation process combining sonochemistry (US) and electrochemistry (EC) for the batch scale degradation of ibuprofen was developed. The performance of this hybrid reactor system was evaluated by quantifying on the degradation of ibuprofen under the variation in electrolytes, frequency, applied voltage, ultrasonic power density and temperature in aqueous solutions with a platinum electrode. Among the methods examined (US, EC and US/EC), the hybrid method US/EC resulted 89.32%, 81.85% and 88.7% degradations while using NaOH, H2SO4 and deionized water (DI), respectively, with a constant electrical voltages of 30 V, an ultrasound frequency of 1000 kHz, and a power density of 100 W L−1 at 298 K in 1 h. The degradation was established to follow pseudo first order kinetics. In addition, energy consumption and energy efficiencies were also calculated. The probable mechanism for the anodic oxidation of ibuprofen at a platinum electrode was also postulated.  相似文献   

8.
Cube micrometer potassium niobate (KNbO3) powder, as a high effective sonocatalyst, was prepared using hydrothermal method, and then, was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of prepared KNbO3 powder, the sonocatalytic degradation of some organic dyes was studied. In addition, some influencing factors such as heat-treatment temperature and heat-treatment time on the sonocatalytic activity of prepared KNbO3 powder and catalyst added amount and ultrasonic irradiation time on the sonocatalytic degradation efficiency were examined by using UV–visible spectrophotometer and Total Organic Carbon (TOC) determination. The experimental results showed that the best sonocatalytic degradation ratio (69.23%) of organic dyes could be obtained when the conditions of 5.00 mg/L initial concentration, 1.00 g/L prepared KNbO3 powder (heat-treated at 400 °C for 60 min) added amount, 5.00 h ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the micrometer KNbO3 powder could be considered as an effective sonocatalyst for treating non- or low-transparent organic wastewaters.  相似文献   

9.
A silent discharge reactor initiated by bipolar pulsed power substituting the traditional ac power was used to remove the volatile organic compounds (VOCs) mixture of acetone, benzene, tetrachloroethylene and m-xylene. The results indicated that the silent discharge driven by bipolar pulsed power could effectively input pulsed energy, produce strong instant discharge and energetic particles, and thus enhance the removal efficiency of the mixed VOCs. The order of the removal efficiency of mixed VOCs followed as acetone < benzene < tetrachloroethylene < m-xylene no matter what power supply was used. Comparing with single-compound, the removal efficiency of m-xylene only fell a little but those of the other three components fell a lot in the process of the mixed VOCs treatment. In addition, controlling the status of electrical discharge plasma by changing the discharge parameters (such as capacitance of the pulse capacitor and pulse repetitive rate) was found to be an efficient way to enhance the removal efficiency of the mixed VOCs. In this system, the Cp = 2 nF was the optimal capacitance for the bipolar power supply combined with the silent discharge reactor that had the best energy conversion efficiency for removal of mixed VOCs. A higher pulse repetitive rate and longer residence time could also increase the removal efficiency of mixed VOCs.  相似文献   

10.
《Ultrasonics sonochemistry》2014,21(5):1778-1786
The present work deals with application of sonochemical reactors for the treatment of imidacloprid containing wastewaters either individually or in combination with other advanced oxidation processes. Experiments have been performed using two different configurations of sonochemical reactors viz. ultrasonic horn (20 kHz frequency and rated power of 240 W) and ultrasonic bath equipped with radially vibrating horn (25 kHz frequency and 1 kW rated power). The work also investigates the effect of addition of process intensifying agents such as H2O2 and CuO, which can enhance the production of free radicals in the system. The combination studies with advanced oxidation process involve the advanced Fenton process and combination of ultrasound with UV based oxidation. The extent of degradation obtained using combination of US and H2O2 at optimum loading of H2O2 was found to be 92.7% whereas 96.5% degradation of imidacloprid was achieved using the combination of US and advanced Fenton process. The process involving the combination of US, UV and H2O2 was found to be the best treatment approach where complete degradation of imidacloprid was obtained with 79% TOC removal. It has been established that the use of cavitation in combination with different oxidation processes can be effectively used for the treatment of imidacloprid containing wastewater.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(6):1982-1987
Sonophotolytic degradation of THMs mixture with different electrical energy ratio was carried out for efficient design of process. The total consumed electrical energy was fixed around 50 W, and five different energy conditions were applied. The maximum degradation rate showed in conditions of US:UV = 1:3 and US:UV = 0:4. This is because the photolytic degradation of bromate compounds is dominant degradation mechanism for THMs removal. However, the fastest degradation of total organic carbon was observed in a condition of US:UV = 1:3. Because hydrogen peroxide generated by sonication was effectively dissociated to hydroxyl radicals by ultraviolet, the concentration of hydroxyl radical was maintained high. This mechanism provided additional degradation of organics. This result was supported by comparison between the concentration of hydrogen peroxide sole and combined process. Consequently, the optimal energy ratio was US:UV = 1:3 for degradation of THMs in sonophotolytic process.  相似文献   

12.
In this study, removal of Cresol Red (CR), a cationic triphenylmethane dye, by 300 kHz ultrasound was investigated. The effect of additive such as potassium monopersulfate (oxone) was studied. Additionally, sonolytic degradation of CR was investigated at varying power and initial pH. RC can be readily eliminated by the ultrasound process. The obtained results showed that. Sonochemical degradation of CR was strongly affected by ultrasonic power and pH. The degradation rate of the dye increased substantially with increasing ultrasonic power in the range of 20–80 W. This improvement could be explained by the increase in the number of active cavitation bubbles. The significant degradation was achieved in acidic conditions (pH = 2) where the color removal was 99% higher than those observed in higher pH aqueous solutions. The ultrasonic degradation of dye was enhanced by potassium monopersulfate (oxone) addition. It was found that the degradation of the dye was accelerated with increased concentrations of oxone for a reaction time of 75 min.  相似文献   

13.
Nano-sized magnetic Fe0/polyaniline (Fe0/PANI) nanofibers were used as an effective material for sonocatalytic degradation of organic anionic Congo red (CR) dye. Fe0/PANI, was synthesized via reductive deposition of nano-Fe0 onto the PANI nanofibers at room temperature. Prepared catalyst was characterized using HR-TEM, FE-SEM, XRD, FTIR instruments. The efficacy of catalyst in removing CR was assessed colorimetrically using UV–visible spectroscopy under different experimental conditions such as % of Fe0 loading into the composite material, solution pH, initial concentration of dye, catalyst dosage, temperature and ultrasonic power. The optimum conditions for sonocatalytic degradation of CR were obtained at catalyst concentrations = 500 mg.L−1, concentration of CR = 200 ppm, solution pH = neutral (7.0), temperature = 30 °C, % of Fe0 loading = 30% and 500 W ultrasonic power. The experimental results showed that ultrasonic process could remove 98% of Congo red within 30 min with higher Qmax value (Qmax = 446.4 at 25 °C). The rate of degradation of CR dye was much faster in this ultrasonic technique rather than conventional adsorption process. The degradation efficiency declined with the addition of common inorganic salts (NaCl, Na2CO3, Na2SO4 and Na3PO4). The rate of degradation suppressed more with increasing salt concentration. Kinetic and isotherm studies indicated that the degradation of CR provides pseudo-second order rate kinetic and Langmuir isotherm model compared to all other models tested. The excellent high degradation capacity of Fe0/PANI under ultrasonic irradiation can be explained on the basis of the formation of active hydroxyl radicals (OH) and subsequently a series of free radical reactions.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(5):1787-1796
Application of Advanced Oxidation Processes (AOP) such as sono, photo and sonophoto catalysis in the purification of polluted water under ambient conditions involve the formation and participation of Reactive Oxygen Species (ROS) like OH, HO2, O2, H2O2 etc. Among these, H2O2 is the most stable and is also a precursor for the reactive free radicals. Current investigations on the ZnO mediated sono, photo and sonophoto catalytic degradation of phenol pollutant in water reveal that H2O2 formed in situ cannot be quantitatively correlated with the degradation of the pollutant. The concentration of H2O2 formed does not increase corresponding to phenol degradation and reaches a plateau or varies in a wave-like fashion (oscillation) with well defined crests and troughs, indicating concurrent formation and decomposition. The concentration at which decomposition overtakes formation or formation overtakes decomposition is sensitive to the reaction conditions. Direct photolysis of H2O2 in the absence of catalyst or the presence of pre-equilibrated (with the adsorption of H2O2) catalyst in the absence of light does not lead to the oscillation. The phenomenon is more pronounced in sonocatalysis, the intensity of oscillation being in the order sonocatalysis > photocatalysis  sonophotocatalysis while the degradation of phenol follows the order sonophotocatalysis > photocatalysis > sonocatalysis > sonolysis > photolysis. In the case of sonocatalysis, the oscillation continues for some more time after discontinuing the US irradiation indicating that the reactive free radicals as well as the trapped electrons and holes which interact with H2O2 have longer life time (memory effect).  相似文献   

15.
In our current research work, the effect of combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) on the enzymatic activity and enzymatic hydrolysis kinetic parameters of dextran catalytic by dextranase were investigated. Furthermore, the effects of US/HHP on the structure of dextranase were also discussed with the aid of fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The maximum hydrolysis of dextran was observed under US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 25 min), in which the hydrolysis of dextran increased by 163.79% compared with the routine thermal incubation at 50 °C. Results also showed that, Vmax and KM values, as well as, kcat of dextranase under US/HHP treatment were higher than that under US, HHP and thermal incubation at 50 °C, indicated that, the substrate is converted into the product at an increased rate when compared with the incubation at 50 °C. Compared to the enzymatic reaction under US, HHP, and routine thermal incubation, dextranase enzymatic reaction under US/HHP treatment showed decreases in Ea, ΔG and ΔH, however small increase in ΔS value was observed. In addition, fluorescence and CD spectra reflected that US/HHP treatment had increased the number of tryptophan on dextranase surface with increased α-helix by 19.80% and reduced random coil by 6.94% upon US/HHP-treated dextranase protein compared to the control, which were helpful for the improvement of its activity. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the hydrolysis of dextran in many industrial applications including sugar manufacturing processes.  相似文献   

16.
The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H2O2/Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35 min). The synergism between the UV process and the sonolytic one was quantified as 55.2%.To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28 L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H2O2/Fe process reaching 60% of mineralization would cost 2.1 and 3.8 €/m3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate.In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36 €/m3. However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated.  相似文献   

17.
We examined the feasibility of using two types of fly ash (an industrial waste from thermal power plants) as a low-cost catalyst to enhance the ultrasonic (US) degradation of ibuprofen (IBP) and sulfamethoxazole (SMX). Two fly ashes, Belews Creek fly ash (BFA), from a power station in North Carolina, and Wateree Station fly ash (WFA), from a power station in South Carolina, were used. The results showed that >99% removal of IBP and SMX was achieved within 30 and 60 min of sonication, respectively, at 580 kHz and pH 3.5. Furthermore, the removal of IBP and SMX achieved, in terms of frequency, was in the order 580 kHz > 1000 kHz > 28 kHz, and in terms of pH, was in the order of pH 3.5 > pH 7 > pH 9.5. WFA showed significant enhancement in the removal of IBP and SMX, which reached >99% removal within 20 and 50 min, respectively, at 580 kHz and pH 3.5. This was presumably because WFA contains more silicon dioxide than BFA, which can enhance the formation of OH radicals during sonication. Additionally, WFA has finer particles than BFA, which can increase the adsorption capacity in removing IBP and SMX. The sonocatalytic degradation of IBP and SMX fitted pseudo first-order rate kinetics and the synergistic indices of all the reactions were determined to compare the efficiency of the fly ashes. Overall, the findings have showed that WFA combined with US has potential for treating organic pollutants, such as IBP and SMX, in water and wastewater.  相似文献   

18.
《Ultrasonics sonochemistry》2014,21(4):1325-1334
In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers.  相似文献   

19.
Sonoelectrochemical decomposition of organic compounds is a developing technique among advanced oxidation processes (AOPs). It has the advantage over sonication alone that it increases the efficiency of the process in terms of a more rapid decrease in chemical oxygen demand (COD) and in total organic carbon (TOC) and accelerates electrochemical oxidation which normally requires a lengthy period of time to achieve significant mineralisation. Moreover the use of an electrocatalytic electrode in the process further accelerates the oxidation reaction rates. The aim of this study was to improve the decomposition efficiency of methylene blue (MB) dye by sonoelectrochemical decomposition using environmentally friendly and cost-effective Ti/Ta2O5–SnO2 electrodes. Decolourisation was used to assess the initial stages of decomposition and COD together with TOC was used as a measure of total degradation. The effect of a range of sonication frequencies 20, 40, 380, 850, 1000 and 1176 kHz at different powers on the decolourisation efficiency of MB is reported. Frequencies of 850 and 380 kHz and the use of higher powers were found more effective towards dye decolourisation. The time for complete MB degradation was reduced from 180 min using electrolysis and from 90 min while carrying out sonolysis to 45 min when conducting a combined sonoelectrocatalytic experiments. The COD reduction of 85.4% was achieved after 2 h of combined sonication and electrolysis which is a slightly higher than after a single electrolysis (78.9%) and twice that of sonolysis (40.4%). A dramatic improvement of mineralisation values were observed within 2 h of sonoelectrocatalytic MB degradation. The TOC removal efficiency increased by a factor of 10.7 comparing to sonication alone and by a factor of 1.5 comparing to the electrolytic process. The energy consumption (kWh/m3) required for the complete degradation of MB was evaluated.  相似文献   

20.
Pharmaceutical products are often present in wastewater treatment effluents, rivers, lakes and, more rarely, in groundwater. The advanced oxidation methods, like ultrasound, find a promising future in the area of wastewater treatment. The aim of this paper is to evaluate the influence of several parameters of the ultrasound process on the degradation of paracetamol, a widely used non-steroidal anti-inflammatory recalcitrant drug found in water and levodopa, the most frequently prescribed drug for the treatment of Parkinson disease. Experiments were carried out at 574, 860 and 1134 kHz of ultrasonic frequency with horn-type sonicator and actual power values of 9, 17, 22 and 32 W at 20 °C. Initial concentrations of 25, 50, 100 and 150 mg L?1 of both products were used. Treatment efficiency was assessed following changes in pharmaceuticals concentration and chemical oxygen demand.The sonochemical degradation of both products follows a pseudo-first-order reaction kinetics. Complete removal of pharmaceuticals was achieved in some cases but some dissolved organic carbon remains in solution showing that long lived intermediates were recalcitrant to ultrasound irradiation. Pollutants conversion and COD removal were found to decrease with increasing the initial solute concentration and decreasing power. The best results were obtained with 574 kHz frequency. Investigations using 1-butanol as radical scavenger and H2O2 as promoter revealed that pollutants degradation proceeds principally through radical reactions, although some differences were observed between both molecules. Addition of H2O2 had a positive effect on degradation rate, but the optimum concentration of hydrogen peroxide depends on the pollutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号