首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
In this paper, results of hydrogen production via methane pyrolysis in the atmospheric pressure microwave plasma with CH4 swirl are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. The plasma generation was stabilized by a CH4 swirl having a flow rate of 87.5 L min-1. The absorbed microwave power was 1.5–5 kW. The hydrogen production rate and the corresponding energy efficiency were 866 g (H2) h-1 and 577 g (H2) kWh-1 of microwave energy absorbed by the plasma, respectively. These parameters are better than our previous results when nitrogen was used as a swirl gas and much better than those typical for other plasma methods of hydrogen production (electron beam, gliding arc, plasmatron).  相似文献   

2.
The individual monitoring service Seibersdorf uses two different passive dosemeter types based on thermo luminescence (TL) detectors for monitoring occupationally exposed persons in Austria. Whole body personal dosemeters for the personal dose equivalent quantities Hp(10) and Hp(0.07) worn on the trunk and dosemeters for the extremities for Hp(0.07) worn on a finger or wrist. Both routine dosemeters were calibrated and tested in terms of the personal dose equivalent Hp(3) assuming that the whole body dosemeter is worn on the chest (without or above a lead apron) and the modified ring/wrist dosemeter using a special strap worn on the forehead near the eyes (head band dosemeter). The test results show that it is possible to measure the dose quantity Hp(3) with these dosemeters that were originally not designed for this dose quantity. Only changes in the dose calculation algorithm and in the choice of the reference radiation quality were necessary to fulfil the requirements given in international standards for passive dosemeters in a wide energy (20 keV–1.3 MeV) and angular range (0°–60°).  相似文献   

3.
Aerial l-alanine pellet dosimeter is characterized by MiniScope MS300 electron spin resonance spectrometer measurements using Aer'EDE Version 2.0.4. software for dose calculation. The measurement traceability is achieved by Aerial dosimetry laboratory where dosimeters for calibration curve were irradiated by electron beam accelerator. Dose determinations in Aerial are traceable to National Physical Laboratory (NPL). The software used for construction of calibration curve gives also the standard deviation of the residuals of measurements for calibration that is used for dose uncertainty calculation. In aim to determine whether this value can actually be taken as absorbed dose uncertainty during usage of this dosimetry system, alanine dosimeters were irradiated with doses between 5 and 32 kGy by 60Co laboratory source for internal calibration. The dose rate at the places for irradiation was (20 ± 0.5) mGy s−1 determined by Fricke dosimeter. Measurement of each irradiated dosimeter was repeated ten times in ten days. The results of measurements were analyzed to identify the sources of uncertainty, as well as their quantification in evaluation of total measurement uncertainty. In addition to statistical effects, the very low dose rate that was used for the irradiation of alanine dosimeters affects the measurements of absorbed dose, particularly for higher absorbed doses where the measured dose can be up to 3% lower than the real.  相似文献   

4.
International recommendations establish that 90Sr + 90Y clinical applicators have to be calibrated in order to determine the absorbed dose rates in the case of the sources that do not have original calibration certificates, or to update the absorbed dose rates presented in the source certificates. Following these recommendations, a postal dosimetric system was developed to calibrate clinical applicators using two luminescent techniques: thermoluminescence (TL) and optically stimulated luminescence (OSL). In this work, Al2O3:C commercial detectors were characterized and their TL and OSL responses were analyzed. The results showed the efficiency and the optimal behavior of this material in beta radiation beams. After characterization, the system was sent to the Federal University of Sergipe (UFS), Brazil, for calibration of five 90Sr + 90Y clinical applicators, where the detectors were irradiated and returned to IPEN, for their evaluation and determination of the absorbed dose rates. A comparison between these absorbed dose rates and those adopted by the UFS as original was made; the differences obtained were within those of other studies, and they demonstrated the usefulness of the system.  相似文献   

5.
《Solid State Ionics》2006,177(26-32):2407-2411
Electrical conduction of Sr-doped LaP3O9 ([Sr]/{[La] + [Sr]} = 2–10 mol%) was investigated under 0.4–5 kPa of p(H2O) and 0.01–100 kPa of p(O2) or 0.3–3 kPa of p(H2) at 573–973 K. Sr-doped LaP3O9 showed apparent H/D isotope effect on conductivity regardless of the Sr-doping level under both H2O/O2 oxidizing and H2/H2O reducing conditions at investigated temperatures. Conductivities of the material were almost independent of p(O2) and p(H2O). These results demonstrated that the Sr-doped LaP3O9 exhibited protonic conduction under wide ranges of p(O2), p(H2O) and temperature. The conductivity of the Sr-doped LaP3O9 increased with increasing Sr concentration up to its solubility limit, ca. 3 mol%, while the further Sr-doping slightly degraded the conductivity. These indicate that Sr2+ substitution for La3+ leads to proton dissolution into the material and induced protonic conduction. Conductivities of the 3 mol% Sr-doped sample were 2 × 10- 6–5 × 10 4 S cm 1 at 573–973 K.  相似文献   

6.
A new radiophotoluminescence (RPL) glass dosimeter was developed for use in high temperature conditions such as nuclear emergencies. Its glass material was successfully made by a melting method from reagent grade powder of Ca(H2PO4)2, NaPO3 and AgCl. The new RPL glass dosimeter expectedly emitted orange photons for exposure to UV light after gamma-ray irradiation. It was confirmed that its RPL intensity was proportional to absorbed dose in the range from 10 to 104 mGy. As for its temperature-proof performance, it was found that the RPL sensitivity hardly changed at 573 K for 3 h but gradually went down 25% for 50 h.  相似文献   

7.
In this study, analysis of optical emission spectra are used for the detection of OH (A2Σ) radicals and O (3p5P), Hα (3P) and N (3p4P) active atoms produced by the high-voltage bi-directional pulsed corona discharge of N2 and H2O mixture gas in a needle-plate reactor at one atmosphere. The relative vibrational populations and the vibrational temperature of N2 (C, v') are determined. The effects of pulse peak voltage, pulse repetition rate and the added O2 flow rate on the relative populations of OH (A2Σ) radicals and O (3p5P), Hα (3P) and N (3p4P) active atoms are investigated. It is found that when pulse peak voltage and pulse repetition rate are increased, the relative populations of those excited states radicals rise correspondingly. The relative population of OH (A2Σ) radicals decreases with increasing the flow rate of oxygen. The relative populations of O (3p5P), Hα (3P) and N (3p4P) active atoms increase with the flow rate of oxygen at first and exhibit a maximum value at about 30 ml/min. When the flow rate of oxygen is increased further, the relative populations of those excited states active atoms decrease correspondingly. The main involved physicochemical processes also have been discussed.  相似文献   

8.
In this paper results of the experimental investigations of a coaxial microwave (2.45 GHz) microplasma source (MMS) with graphite or tungsten inner conductor operated in Ar, N2 and Ar/C2H2 mixture at atmospheric pressure are presented. The microwave power absorbed by the microplasmas and the intensity of UV-C emission from the microplasmas were measured. Using optical emission spectroscopy, the electron number density in Ar microplasma, and rotational and vibrational temperatures in N2 and Ar/C2H2 microplasmas were determined. All experiments were performed with a gas flow rate from 0.3 to 8 l/min and absorbed microwave power from 5 to 300 W. The simplicity of the MMS, stability of its operation with atmospheric pressure gases, and parameters of the microplasmas allow concluding that the MMS can be used in various applications.  相似文献   

9.
Commercially available α-Al2O3:C powder was studied for deep energy level defects by a newly suggested method using thermally assisted optically stimulated luminescence (TA-OSL) phenomenon. The method involves simultaneous application of continuous wave optically stimulated luminescence (CW-OSL) as well as thermal stimulation up to 400 °C, using a linear heating rate of 4 K/s. By using this method, two well-defined peaks at 121 °C and 232 °C were observed. These TA-OSL peaks have been correlated to two different types of deeper defects which can be bleached at 650 °C and 900 °C respectively on thermal treatment. These deeper defects, having larger thermal trap depth and relatively lower photoionization cross-section at room temperature for stimulation with blue LED (470 nm), are stable up to 500 °C, so they can store absorbed dose information even if the sample is inadvertently exposed to light or temperature. As only a fraction of signal is bleached during TA-OSL readout, multiple readouts could be performed on an exposed sample using this technique. The dose vs TA-OSL response from deep traps of α-Al2O3:C was found to be linear up to 10 kGy, thus extending its application for high dose dosimetry. The value of thermally assisted energy (EA) associated with these traps in α-Al2O3:C has been determined to be 0.268 eV and 0.485 eV respectively and the corresponding values of photoionization cross-section at room temperature (25 °C), for optical stimulation with blue light (470 nm), are 5.82 × 10?20 and 3.70 × 10?22 cm2, respectively. The process of thermally assisted OSL has been formulated analytically as well as theoretically for describing the temperature dependence of optical cross-section and evaluation of thermally assisted energy associated with deep traps.  相似文献   

10.
To develop an improved dosemeter to assess photon and beta exposures of the eye lens, and in response to issues surrounding the preferred values of Hlens to be used for guiding operational radiation protection, a programme of re-optimization of the current PHE thermoluminescence dosemeter has been performed. In particular, refinements of the filter located in front of the sensitive 7LiF:Mg,Cu,P element have been considered, so that the dose response characteristics of the device provide a better and more conservative estimate of risk. The investigation was performed using the Monte Carlo modelling software MCNP5, to produce a final design that featured a filter containing a 9.5 mm diameter polypropylene hemisphere truncated to a maximum thickness of 3.0 mm. The responses of this design in photon and electron fields are presented here, contrasted against those of the existing PHE eye dosemeter, with respect to the operational quantity Hp(3,E,θ) and both current and suggested values for the absorbed dose per fluence risk profile for the lens of the eye.  相似文献   

11.
We aimed to evaluate the suitability of a glass dosimeter (GD) for high-energy photon and electron beams in experimental and clinical use, especially for radiation therapy. We examined the expanded dosimetric characteristics of GDs including dose linearity up to 500 Gy, uniformity among GD lots and for individual GDs, the angular dependence, and energy dependence of 4 therapeutic x-ray qualities. In addition, we measured the dosimetric features (dose linearity, uniformity, angular dependence, and energy dependence) of the GD for electron beams of 10 different electron energy qualities. All measurements with the exception of dose linearity for photon beam were performed in a water phantom. For high-energy photon beams, dose linearity has a linear relationship for a dose ranging from 1 to 500 Gy with the coefficient of determination; R2 of 0.998. The uniformity of each GD of dose measurements was within ±0.5% for four GD lots and within ±1.2% for 80 GDs. In terms of the effects of photon beam angle, lower absorbed doses of within 1.0% were observed between 60° and 105° than at 90°. The GD energy dependence of 4 photon beam energy qualities was within ±2.0%. On the other hand, the result of the dose linearity for high-energy electron beams showed well fitted regression line with the coefficient of determination; R2 of 0.999 between 6 and 20 MeV. The uniformity of GDs exposed to the nominal electron energies 6, 9, 12, 16, and 20 MeV was ±1.2%. In terms of the angular dependence to electron beams, absorbed doses were within 2.0% between 60° and 105° than at 90°. In evaluation of the energy dependence of the GD at nominal electron energies between 5 and 20 MeV, we obtained responses between 1.1% and 3.5% lower than that for a cobalt-60 beam. Our results show that GDs can be used as a detector for determining doses when a high-energy photon beam is used, and that it also has considerable potential for dose measurement of high-energy electron beam.  相似文献   

12.
High resolution diode laser spectroscopy has been applied to the detection of hydrogen sulphide at ppm levels utilizing different transitions within the region of the ν 1+ν 2+ν 3 and 2ν 1+ν 2 combination bands around 1.58 μm. Suitable lines in this spectral region have been identified, and absolute absorption cross sections have been determined through single-pass absorption spectroscopy and confirmed in the Doppler linewidth regime using cavity enhanced absorption spectroscopy (CEAS). The desire for a sensitive system potentially applicable to H2S sensing at atmospheric pressure has led to an investigation on suitable transitions using wavelength modulation spectroscopy (WMS). The set-up sensitivity has been calculated as 1.73×10−8 cm−1 s1/2, and probing the strongest line at 1576.29 nm a minimum detectable concentration of 700 ppb under atmospheric conditions has been achieved. Furthermore, pressure broadening coefficients for a variety of buffer gasses have been measured and correlated to the intermolecular potentials governing the collision process; the H2S–H2S dimer well depth is estimated to be 7.06±0.09 kJ mol−1.  相似文献   

13.
The critical current density Jc of some of the superconducting samples, calculated on the basis of the Bean’s model, shows negative curvature for low magnetic field with a downward bending near H = 0. To avoid this problem Kim’s expression of the critical current density, Jc = k/(H0 + H), where Jc has positive curvature for all H, has been employed by connecting the positive constants k and H0 with the features of the hysteresis loop of a superconductor. A relation between the full penetration field Hp and the magnetic field Hmin, at which the magnetization is minimum, is obtained from the Kim’s theory. Taking the value of Jc at H = Hp according to the actual loop width, as in the Bean’s theory, and at H = 0 according to an enhanced loop width due to the local internal field, values of k and H0 are obtained in terms of the magnetization values M+(?Hmin), M?(Hmin), M+(Hp) and M?(Hp). The resulting method of estimating Jc from the hysteresis loop turns out to be as simple as the Bean’s method.  相似文献   

14.
Microhydrated methylene blue cations, MB+(H2O) n , are produced in an electrospray ion source and their size-distributions are measured as a function of the source temperature. A series of MB+(H2O) n ions is observed up to n ≃ 60. A striking feature observed in the mass spectra is that the series of hydrated ions starts at n = 4; intensities of n = 1–3 are extremely suppressed. The absence of n = 1–3 ions is well explained by the energetics concerning evaporation processes of water molecules, based on stable structures and the binding energies of MB+(H2O) n ions calculated by DFT calculations up to n = 5. MB+(H2O) n ions for n > 4 evaporate a single water molecule sequentially, while MB+(H2O)4 tends to fragment into MB+ and (H2O)4 rather than MB+(H2O)3 and an H2O molecule. We have observed a clear magic peak at n = 24, which strongly suggests that the MB+(H2O)24 ion is formed by attaching a neutral (H2O)20 cage onto an MB+(H2O)4 ion.  相似文献   

15.
16.
Low-temperature synthesis of highly transparent conducting B-doped (p-type) nc-SiOX:H films has been pursued by 13.56 MHz plasma-CVD, using a combination of SiH4, CO2 and B2H6, diluted by H2 and He. Higher substrate temperature (TS) encourages nanocrystallization in B-doped nc-SiOX:H network by reducing bonded H-content, while bonded O-content also reduces simultaneously. At optimized TS = 150 °C, p–nc-SiOX:H film having an optical band gap ~1.98 eV, high conductivity ~0.18 S cm−1, has been obtained via dopant-induced escalation of the electrically active carriers at a deposition rate ~5.3 nm/min. The p–nc-SiOX:H film appears as a promising window layer for the top sub-cell of multi-junction silicon solar cells. A single-junction nc-Si:H based p-i-n solar cell of efficiency (η) ~7.14% with a current-density (JSC) ~14.18 mA/cm2, reasonable fill-factor (FF) ~66.2% and open-circuit voltage (VOC) ~0.7606 V has been fabricated, using the optimum p-type nc-SiOX:H as the window layer deposited at TS = 150 °C.  相似文献   

17.
Thermal evaporation technique was used to prepare NiTPP Thin films at room temperature. The prepared films were divided into two groups; the first group was as-deposited films, and the second group was irradiated in gamma cell type 60Co source at room temperature with total absorbed dose of 150 kGy in air. All films were identified by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) before and after exposed to gamma radiation. The spectrophotometric measurement of transmittance and reflectance were used to investigate the optical properties at normal incidence of light in the wavelength range 200–2500 nm for as-deposited and gamma-irradiated films. Optical constants (refractive index n, and absorption index k) of as-deposited and irradiated films have been obtained in the wavelength range 200–2500 nm for all the samples. The single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε), the lattice dielectric constant (εL) and the ratio of the free charge carrier concentration to the effective mass (N/m?) were estimated for each group. The absorption analysis has been also performed to determine the type of electronic transition and the optical energy gap.  相似文献   

18.
The kinetics of the C6H5 reactions with CH3OH and C2H5OH has been measured by pulsed-laser photolysis/mass-spectrometry (PLP/MS) employing acetophenone as the radical source. Kinetic modeling of the benzene formed in the reactions over the temperature range 306–771 K allows us to reliably determine the total rate constants for H-abstraction reactions. In order to improve our low temperature measurements down to 304 K we have also applied the cavity ring-down spectrometric technique using nitrosobenzene as the radical source. Both sets of data agree closely. A weighted least-squares analysis of the two complementary sets of data for the two reactions gave the total rate constants k(CH3OH) = (7.82 ± 0.44) × 1011 exp [?(853 ± 30)/T] and k(C2H5OH) = (5.73 ± 0.58) × 1011 exp [?(1103 ± 44)/T] cm3 mol?1 s?1 for the temperature range studied. Theoretically, four possible product channels of the C6H5 + CH3OH reaction producing C6H6 + CH3O, C6H6 + CH2OH, C6H5OH + CH3 and C6H5OCH3 + H and five possible product channels of the C6H5 + C2H5OH reaction producing C6H6 + C2H5O, C6H6 + CH2CH2OH, C6H6 + CH3CHOH, C6H5OH + CH3CH2 and C6H5OCH2CH3 + H have been computed at the G2M//B3LYP/6?311+G(d, p) level of theory. The hydrogen abstraction channels were predicted to have lower energy barriers than those for the substitution reactions and their rate constants were calculated by the microcanonical variational transition state theory at 200–3000 K. The predicted rate constants are in good agreement with the experimental values. Significantly, the rate constant for the CH3OH reaction with C6H5 was found to be greater than that for the C2H5OH reaction and both reactions were found computationally to be dominated by H-abstraction from the hydroxyl group attributable to the affinity of the phenyl toward the OH group and the predicted lower energy barriers for the OH attack.  相似文献   

19.
Thermally stimulated current (TSC) spectra were examined for ethylene–propylene (EP) random co-polymer at different charging voltages Vp with positive and negative polarities. Observed TSC spectra showed two well-separated TSC bands, BL and BH, which respectively appeared in the temperature regions below and above 100 °C. Observed Vp dependence of BL was quite different from that of typical polypropylene homo-polymer: As Vp increased, BL band grew keeping its peak position same at 65 °C, and the band shape unchanged, as if the traps responsible for the BL band are a single set of traps with the same trap depth and capture cross section. The trap depth of BL was about 1.9 eV and 1.7 eV for positively charged EP and talc-containing EP samples, respectively. EP samples also showed unique TSC bands above 100 °C: one is a narrow TSC band peaked at 120 °C and the other is an unusual TSC band which was non-vanishing even at 165 °C just before destruction of samples by their melting. Consequently, the utmost stable charge density in EP co-polymer above 100 °C was found to be 3.5 × 10?4 C/m2 and 6.0 × 10 ?4 C/m2 for positively and negatively charged samples, respectively. These equivalent surface charge densities are much larger than those of usual polypropylene homo-polymer.  相似文献   

20.
The average absorbed dose and dose equivalent rates from space radiation were observed using passive dosimeters with same material and configuration at the same location onboard the International Space Station (ISS) over four different occasions (I–IV) between 2007 and 2008. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Total average absorbed dose rate increased by 68 ± 9% over two years. The observed increase was due to the incremental increase in the altitude of the ISS over the course of the experiment and the corresponding increase in trapped proton flux encountered during passage of the ISS through the SAA (South Atlantic Anomaly), which was confirmed with the results monitored by DB-8 active dosimeter on the ISS. The PNTD data showed that the average absorbed dose and dose equivalent rates from particles of LETH2O ≥ 100 keV/μm were 28 ± 2% and 51 ± 3% of ≥10 keV/μm during Periods I–III, while the dose contributions of particles ≥100 keV/μm during Period IV were 36 ± 5% and 59 ± 10%, respectively. The integral dose equivalent distribution during Period IV shows significant enhancement from particles ≥100 keV/μm. These facts suggest that a significant fraction of the high LET component is due to short-range recoil nuclei produced in target fragmentation reactions between primary protons and the nuclei of the passive dosimeters and surrounding materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号