首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The porous WO3/reduced graphene oxide (rGO) composite films are prepared on indium–tin oxide (ITO) glass by sol-gel method. The mixture sol combines peroxotungstic acid solution with rGO dispersion reduced by ethylene glycol (EG). The excessive EG and other organic additives are subsequently removed by annealing, which leads to the formation of porous structure. Compared with pure WO3 film, WO3/rGO composite film shows improved electrochromic performance because of enhanced double insertion/extraction of ions and electrons. It realizes a large optical modulation (64.2 % at 633 nm), fast switching speed (9.5 s for coloration and 4.5 s for bleaching), good cycling stability as well as reversibility.  相似文献   

2.
Tungsten oxide (WO3) films were prepared on indium–tin oxide (ITO) glass by sol–gel method. The influence of annealing temperature on the structural, morphological, optical, electrochemical, and electrochromic properties has been investigated. The film annealed at 250 °C with an amorphous structure exhibits a noticeable electrochromic performance, such as the highest optical modulation of 58.5 % at 550 nm, high electrochemical stability, and excellent reversibility (Q b/Q c?=?96.3 %). An electrochromic (EC) device based on WO3/NiO complementary structure shows improved performance. It exhibits high optical transmittance modulation of 62 % at 550 nm, excellent cycling stability, and relatively fast electrochromic response time (10 s for coloration and 19 s for bleaching).  相似文献   

3.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

4.
We present the crystal growth, optical spectroscopy, and room temperature continuous-wave (CW) laser operation of monoclinic Ho:KLu(WO4)2 crystals. Macro defect-free crystals of several dopant concentrations were grown by top-seeded solution growth slow-cooling method. The evolution of unit cell parameters with holmium doping level and temperature was studied using X-ray powder diffraction. The spectroscopic properties were characterized in terms of room- and low-temperature optical absorption and photoluminescence. From low-temperature optical absorption measurements, the energy of the Stark levels was determined. Calculation of the emission and gain cross sections is presented. CW laser action was realized for 3 and 5 at. % Ho-doped KLu(WO4)2 by in-band pumping using a Tm:KLu(WO4)2 pump laser. A maximum output power of 507 mW with a slope efficiency of ~38 % with respect to the incident power was achieved at 2,080 nm with the Ho:KLu(WO4)2 laser.  相似文献   

5.
Thin films of zinc oxide (ZnO) were deposited on cleaned glass substrates by chemical spray pyrolysis technique using Zn(CH3COO)2 as precursor solution. Also, aluminium-doped thin films of ZnO were prepared by using AlCl3 as doping solution for aluminium. The dopant concentration [Al/Zn atomic percentage (at%)] was varied from 0 to 1.5 at% in thin films of ZnO prepared in different depositions. Structural characterization of the deposited films was performed with X-ray diffraction (XRD) studies. It confirmed that all the films were of zinc oxide having polycrystalline nature and possessing typical hexagonal wurtzite structure with crystallite size varying between 100.7 and 268.6 nm. The films exhibited changes in relative intensities and crystallite size with changes in the doping concentration of Al. The electrical studies established that 1 at% of Al-doping was the optimum for enhancing electrical conduction in ZnO thin films and beyond that the distortion caused in the lattice lowered the conductivity. The films also exhibited distinct changes in their optical properties at different doping concentrations, including a blue shift and slight widening of bandgap with increasing Al dopant concentration.  相似文献   

6.
Thin films of molybdenum oxide (MoO3) is one of the most interesting layered intercalation materials because of its excellent application in solid state batteries, large-area window and display systems. In recent years there has been considerable interest in variable transmittance electrochromic devices (ECD) based on Li+, H+ and K+ intercalation in transition metal oxide (MoO3) thin films. In the present investigation, thin films of MoO3 were prepared by electron beam evaporation technique on microscopic glass and fluorine doped tin oxide (FTO) coated glass substrates for the application in electrochromic device cells. The compositional stoichiometry of the films was studied by X-ray photoelectron spectroscopy (XPS). The electrochromic nature of the films has been analyzed by inserting H+ ions from the H2SO4 electrolyte solution using the cyclic-voltammetry (CV) technique. We studied the electrochromic device cells (ECD) incorporating an evaporated MoO3 thin films as electrochromic layers. The devices exhibit good optical properties with low transmittance values in the colored state, which make them suitable for large-area window applications. The maximum coloration efficiency of the cell was observed at about 70 cm2/C.  相似文献   

7.
This paper reports the polyethylene oxide/polyvinylpyrrolidone (PEO/PVP) blend with cobalt chloride (CoCl2) films prepared using spin coating method on blue star glass substrate. The XRD analysis shows the decrease in the crystallinity nature of the CoCl2 with addition of the dopant. The FT-IR analysis reveals that interaction between cobalt ions with polymer blend confirms the complexation. The maximum ionic conductivity 0.65?×?10?4 S cm?1 was observed for PEO (45 %)/PVP (45 %)/CoCl2 (10 %) at 30 °C. The optical energy band gaps decreases and Urbach energy were observed increases with increasing the dopant concentration. The DSC/TGA results showed that thermal stability of films enhanced with dopant concentration. Cyclic voltammogram (CV) study shows that the electrochemical strength improves with dopant concentration. These obtained results imply that polymer blend electrolytes are suitable candidature for various applications such as electronic and optical devices like electro-chromic display, fuel cells, gas sensors and solid state batteries.  相似文献   

8.
In this paper, we studied the effect of micro-size WO3 precipitates on the electrochromic characteristics based on aging test. The electrochromic mechanism can be effectively investigated by a solid-state TaN/WO3/ITO capacitor. The experimental results reveal that WO3 electrochromic devices with optimized aging time of 4 days exhibit a higher optical contrast and longer retention time, which is mainly attributed to the formation of micro-size WO3 precipitates during aging process. The performance improvement using micro-size WO3 precipitates has the potential in future large-area window or energy efficient display applications.  相似文献   

9.
In the last few decades, there has been a surge of interest in using tungsten oxide thin films as an active layer of electrochromic device. These devices have several practical applications such as smart window of buildings and automobile glazing for energy saving. The main objective of this work was to construct highly homogeneous and uniform e-beam evaporated amorphous WO3-x based films into electrochromic devices, which were fully characterized for switching speed, coloration efficiencies and cycling voltammetry responses. Fabricated devices contain indium doped transparent oxide coated glass as the transparent conductive electrode, ~200?nm thickness of WO3-x as the cathodically coloring material and a lithium perchlorate based conducting gel electrolyte. X-ray diffraction patterns indicate that all as-deposited films are amorphous. Experimental results showed that both solid and liquid electrolyte electrochromic devices are initially very transparent that exhibit perfect optical modulation and coloration efficiency (up to 68.7?cm2/C and 52.6?cm2/C at 630?nm, respectively) due to easier intercalation of the Li+ within their structure. One of the more significant findings to emerge from this study is that e-beam coated electrochromic devices based on tungsten oxide thin films showed superior performance among to other coating methods. Therefore, excellent reversibility of color change behavior is attractive for pertinent use in electrochromic energy storage devices.  相似文献   

10.
Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO3 thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO3/GNPs composite films. The electrochromic properties of WO3/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO3/GNPs composite films was improved in comparison with a single component system of WO3.  相似文献   

11.
The influence of substrates, thermal treatment and coloration-bleaching cycles on the structure of WO3 thin films used in electrochromic devices has been investigated by Raman microscopy. Films (2000–8000 Å) were prepared by RF sputtering from a metallic tungsten target at a constant pressure (5 × 10?3Torr) of pure oxygen or a mixture of Ar20% O2. They are amorphous, transparent and electrochromic. Thermal treatment at 360°C produces crystallization. Modifications of the WO3 framework are also induced by coloration-bleaching cycles.  相似文献   

12.
Thin layers of tungsten trioxide have been prepared from an aqueous solution of peroxotungstic acid (PTA) using the sol-gel method. Compositional, structural and optical characteristics of WO3 coated on indium tin oxide (ITO) conductive glass substrates were studied using X-ray diffractometery (XRD), cyclic voltammetery (CV), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Monoclinic and triclinic crystalline structures for thin film and powdered WO3 were confirmed by XRD analysis. SEM micrograph of annealed samples revealed micro cracks due to a decrease in density and a contraction of layers. EDX analysis showed that 1∶2 ratio of oxygen and tungsten atoms in the prepared films is obtained at heat treatment temperatures higher than 200 °C. Furthermore, the annealed samples showed very good electrochromic behavior in cyclic voltammetery studies. Refractive index “n” and extinction coefficient “k” values were found to be reduced by increasing the wavelength and decreasing the temperature.  相似文献   

13.
Niobium (Nb) doped molybdenum trioxide (MoO3) thin films have been synthesized using spray pyrolysis deposition technique. The structural changes were observed with the help of X-ray diffraction technique. With increasing Nb concentration, the structure of MoO3 undergoes a phase transformation from α-orthorhombic to amorphous with nano-sized grains. The thread like reticulated morphology is converted into spongy like structure at higher Nb concentration (9 at% Nb). It is seen that Nb doping can lead to significant surface morphology changes in MoO3 films. It was found that the coloration efficiency increases with doping concentration. With increasing Nb concentration charge capacity, reversibility and electrochemical stability increases. The improvement is attributed to the amorphous structure of the doped samples that favors easy intercalation and deintercalation processes. Hence, we have successfully demonstrated formation of an adequate host for electrochromic devices with Nb (9 at%) doped MoO3 samples.  相似文献   

14.
Ion-conducting polymer electrolyte films based on a copolymer poly(methyl-methacrylate-co-4-vinyl pyridine N-oxide) [P(MMA-CO-4VPNO)] complexed with potassium chlorate (KClO3) were prepared by solution cast technique. The complexation of KClO3 salt with the polymer was confirmed by X-ray diffraction and infrared studies. The electrical conductivity and optical absorption of pure and KClO3-doped P(MMA-CO-4VPNO) polymer electrolyte films have been studied. The electrical conductivity increased with increasing dopant concentration, which is attributed to the formation of charge transfer complexes. The variation of electrical conductivity with temperature shows two regions with two activation energies. Optical properties like direct band gap, indirect band gap, and optical absorption edge were investigated for pure and doped polymer films in the wavelength range 300–550 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. The behavior is in an agreement with the activation energies obtained from the conductivity data.  相似文献   

15.
Mo-doped WO3 nanowires were fabricated by a hydrothermal method in the presence of K2SO4. The physical properties of prepared nanowires were characterized by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the obtained products are nanowires with diameters ranging between 10 and 20 nm, and lengths of about 600 nm. Its photoactivity was evaluated through the photodegradation of methylene blue (MB) in aqueous solution. Effects of the molybdenum concentration on the photoactivity of the obtained samples were investigated detailedly. The experimental results indicated that the Mo-doping enhanced the photoactivity of WO3 nanowires.  相似文献   

16.
Mixed tungsten-ruthenium oxide thin films were prepared for the first time by dc magnetron co-sputtering technique and were studied by cyclic voltammetry, optical transmission measurements, Raman spectroscopy and the W L3 and Ru K edges X-ray absorption spectroscopy (XAS) in comparison with pure WO3 films. The Ru concentration was varied in the range from 0 to 28 at.%. XAS results suggest that the average local structure around both tungsten and ruthenium ions remains unchanged within experimental accuracy in all samples, moreover, for tungsten ions, it resembles that of pure WO3 films. However, the presence of the ruthenium ions affects the electrochemical and optical properties of the films. Our results suggest that mixed films are formed by tungsten trioxide grains surrounded by ruthenium oxide phase. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15–21, 2002.  相似文献   

17.
Undoped and aluminum-doped ZnO thin films are prepared by the sol–gel spin-coating process. Zinc acetate dihydrate, ethanol and mono-ethanolamine are used as precursor, solvent and stabilizer, respectively. The atomic percentage of dopant in solution were [Al/Zn] = 1 %, 2 % and 3 %. The effect of Al doping on the optical and electrical properties of ZnO films was investigated by X-ray diffraction (XRD), Four-Point probe technique and UV–visible spectrophotometery. The results from the X-ray diffraction show that the pure ZnO thin films had a polycrystalline structure of the hexagonal Wurtzite Type. A minimum resistivity of $3.3 \times 10^{-3} \Omega \cdot \mathrm{cm}$ was obtained for the film doped with 2 mol % Al. Optical transmissions reveal a good transmittance within the visible wavelength spectrum region for all of the films. The value of the band gap is enhanced from 3.21 eV (undoped ZnO) to 3.273 eV (Al/Zn = 3 %), the increase in the band gap can be explained by the Burstein–Moss effect.  相似文献   

18.
A nanocrystalline and porous p-polyaniline/n-WO3 dissimilar heterojunction at ambient temperature is reported. The high-quality and well-reproducible conjugated polymer composite films have been fabricated by oxidative polymerization of anilinium ion on predeposited WO3 thin film by chemical bath deposition followed by thermal annealing at 573 K for 1 h. Atomic force microscopy (AFM) analyses reveal a homogenous but irregular cluster of faceted spherically shaped grains with pores. The scanning electron microscopy confirms the porous network of grains, which is in good agreement with the AFM result. The optical absorption analysis of polyaniline/WO3 hybrid films showed that direct optical transition exist in the photon energy range 3.50–4.00 eV with bandgap of 3.70 eV. The refractive index developed peak at 445 nm in the dispersion region while the high-frequency dielectric constant, ? , and the carrier concentration to effective mass ratio, N/m*, was found to be 1.58 and 1.10 × 1039 cm?3, respectively. The temperature dependence of electrical resistivity of the deposited films follows the semiconductor behavior while the C–V characteristics (Mott–Schottky plots) show that the flat band potential was ?791 and 830 meV/SCE for WO3 and polyaniline.  相似文献   

19.
The performances of electrochromic cells containing evaporated amorphous WO3 thin films as electrochromic material in 1M LiClO4-propylene carbonate-water electrolytes are presented. Much attention has been paid to some parameters such as the thickness of the layer, the overpotential applied to WO3 electrode during the electrochemical coloration and the amount of water contained in the electrolyte (from 50 ppm to 10% in weight). Simultaneous electrical and optical in situ measurements have been carried out to study electrochromism. The optical data were stored into a microprocessor and restituted after treatment. The method used here gave us the possibility to rapidly test electrochromic materials.  相似文献   

20.
The potential for extending the optical absorption range of TiO2 by doping with nonmetallic elements was examined in nitrogen-containing TiO2 thin films. Thin films of TiO2-xNx were synthesized on glass and silicon substrates by ion-beam-assisted deposition to obtain a wide range of nitrogen concentrations. The compositions of the films were determined by Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy. The structures of the films were analyzed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The optical properties of the films were measured by UV-Vis spectroscopy and ellipsometry. A characteristic decreasing trend in band-gap values of the films was observed within a certain range of increasing dopant concentrations. As the nitrogen concentration increased, the structure of the films evolved from a well-defined anatase to deformed anatase. The reduced band gaps are associated with the N 2p orbital in the TiO2-xNx films. PACS 78.66.-w; 78.20.Ci  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号