首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synchronization in complex networks with a modular structure   总被引:1,自引:0,他引:1  
Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.  相似文献   

2.
张智  傅忠谦  严钢 《中国物理 B》2009,18(6):2209-2212
Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizability or synchronization stability, of identical oscillators on complex networks with communities. A new weighted community network model is employed here, in which the community strength could be tunable by one parameter δ. The results showed that the synchronization speed of identical oscillators on community networks could reach a maximal value when δ is around 0.1. We argue that this is induced by the competition between the community partition and the scale-free property of the networks. Moreover, we have given the corresponding analysis through the second least eigenvalue λ2 of the Laplacian matrix of the network which supports the previous result that the synchronization speed is determined by the value of λ2.  相似文献   

3.
《Physics letters. A》2014,378(18-19):1239-1248
Synchronization is one of the most important features observed in large-scale complex networks of interacting dynamical systems. As is well known, there is a close relation between the network topology and the network synchronizability. Using the coupled Hindmarsh–Rose neurons with community structure as a model network, in this paper we explore how failures of the nodes due to random errors or intentional attacks affect the synchronizability of community networks. The intentional attacks are realized by removing a fraction of the nodes with high values in some centrality measure such as the centralities of degree, eigenvector, betweenness and closeness. According to the master stability function method, we employ the algebraic connectivity of the considered community network as an indicator to examine the network synchronizability. Numerical evidences show that the node failure strategy based on the betweenness centrality has the most influence on the synchronizability of community networks. With this node failure strategy for a given network with a fixed number of communities, we find that the larger the degree of communities, the worse the network synchronizability; however, for a given network with a fixed degree of communities, we observe that the more the number of communities, the better the network synchronizability.  相似文献   

4.
Jianshe Wu  Xiaohua Wang 《Physica A》2012,391(3):508-514
In this paper, we propose a simple random network model with overlapping communities controlled by several parameters, and investigate the influence of the overlapping community structure on the synchronization behavior under different parameters. It is found that the synchronizability of the network is mainly influenced by the overlapping size of the communities and the connectivity density of the overlapped group to the other interrelated communities, and has nothing to do with the intra-connectivity of the overlapped group. In addition, it is found that the highly interconnected communities can be almost synchronized in a given time scale, whereas the overlapped group is far from synchronization. Furthermore, the instantaneous frequencies of the nodes in the communities and their overlapped group are also investigated, which show that the nodes in the overlapped group will exhibit a remarkable oscillation with a weighted mean frequency of the other correlative communities.  相似文献   

5.
王丹  郝彬彬 《物理学报》2013,62(22):220506-220506
针对真实世界中大规模网络都具有明显聚类效应的特点, 提出一类具有高聚类系数的加权无标度网络演化模型, 该模型同时考虑了优先连接、三角结构、随机连接和社团结构等四种演化机制. 在模型演化规则中, 以概率p增加单个节点, 以概率1–p增加一个社团. 与以往研究的不同在于新边的建立, 以概率φ在旧节点之间进行三角连接, 以概率1–φ进行随机连接. 仿真分析表明, 所提出的网络度、强度和权值分布都是服从幂律分布的形式, 且具有高聚类系数的特性, 聚类系数的提高与社团结构和随机连接机制有直接的关系. 最后通过数值仿真分析了网络演化机制对同步动态特性的影响, 数值仿真结果表明, 网络的平均聚类系数越小, 网络的同步能力越强. 关键词: 无标度网络 加权网络 聚类系数 同步能力  相似文献   

6.
In this paper networks that optimize a combined measure of local and global synchronizability are evolved. It is shown that for low coupling improvements in the local synchronizability dominate network evolution. This leads to an expressed grouping of elements with similar native frequency into cliques, allowing for an early onset of synchronization, but rendering full synchronization hard to achieve. In contrast, for large coupling the network evolution is governed by improvements towards full synchronization, preventing any expressed community structure. Such networks exhibit strong coupling between dissimilar oscillators. Albeit a rapid transition to full synchronization is achieved, the onset of synchronization is delayed in comparison to the first type of networks. The paper illustrates that an early onset of synchronization (which relates to clustering) and global synchronization are conflicting demands on network topology.  相似文献   

7.
The collective synchronization of a system of coupled logistic maps on random community networks is investigated. It is found that the synchronizability of the community network is affected by two factors when the size of the network and the number of connections are fixed. One is the number of communities denoted by the parameter rn, and the other is the ratio σ of the connection probability p of each pair of nodes within each community to the connection probability q of each pair of nodes among different communities. Theoretical analysis and numerical results indicate that larger rn and smaller σ are the key to the enhancement of network synchronizability. We also testify synchronous properties of the system by analysing the largest Lyapunov exponents of the system.  相似文献   

8.
In this paper, the relationship between network synchronizability and the edge-addition of its associated graph is investigated. First, it is shown that adding one edge to a cycle definitely decreases the network synchronizability. Then, since sometimes the synchronizability can be enhanced by changing the network structure, the question of whether the networks with more edges are easier to synchronize is addressed. Based on a subgraph and complementary graph method, it is shown by examples that the answer is negative even if the network structure is arbitrarily optimized. This reveals that generally there are redundant edges in a network, which not only make no contributions to synchronization but actually may reduce the synchronizability. Moreover, a simple example shows that the node betweenness centrality is not always a good indicator for the network synchronizability. Finally, some more examples are presented to illustrate how the network synchronizability varies following the addition of edges, where all the examples show that the network synchronizability globally increases but locally fluctuates as the number of added edges increases.  相似文献   

9.
In this Letter, we propose a growing network model that can generate scale-free networks with a tunable community strength. The community strength, C, is directly measured by the ratio of the number of external edges to that of the internal ones; a smaller C   corresponds to a stronger community structure. By using the Kuramoto model, we investigated the phase synchronization on this network and found an abnormal region (C?0.002C?0.002), in which the network has even worse synchronizability than the unconnected case (C=0C=0). On the other hand, the community effect will vanish when C exceeds 0.1. Between these two extreme regions, a stronger community structure will hinder global synchronization.  相似文献   

10.
In this paper, we study cluster synchronization in general bi-directed networks of nonidentical clusters, where all nodes in the same cluster share an identical map. Based on the transverse stability analysis, we present sufficient conditions for local cluster synchronization of networks. The conditions are composed of two factors: the common inter-cluster coupling, which ensures the existence of an invariant cluster synchronization manifold, and communication between each pair of nodes in the same cluster, which is necessary for chaos synchronization. Consequently, we propose a quantity to measure the cluster synchronizability for a network with respect to the given clusters via a function of the eigenvalues of the Laplacian corresponding to the generalized eigenspace transverse to the cluster synchronization manifold. Then, we discuss the clustering synchronous dynamics and cluster synchronizability for four artificial network models: (i) p-nearest-neighborhood graph; (ii) random clustering graph; (iii) bipartite random graph; (iv) degree-preferred growing clustering network. From these network models, we are to reveal how the intra-cluster and inter-cluster links affect the cluster synchronizability. By numerical examples, we find that for the first model, the cluster synchronizability regularly enhances with the increase of p, yet for the other three models, when the ratio of intra-cluster links and the inter-cluster links reaches certain quantity, the clustering synchronizability reaches maximal.  相似文献   

11.
The interaction between the evolution of the game and the underlying network structure with evolving snowdrift game model is investigated. The constructed network follows a power-law degree distribution typically showing scale-free feature. The topological features of average path length, clustering coefficient, degree-degree correlations and the dynamical feature of synchronizability are studied. The synchronizability of the constructed networks changes by the interaction. It will converge to a certain value when sufficient new nodes are added. It is found that initial payoffs of nodes greatly affect the synchronizability. When initial payoffs for players are equal, low common initial payoffs may lead to more heterogeneity of the network and good synchronizability. When initial payoffs follow certain distributions, better synchronizability is obtained compared to equal initial payoff. The result is also true for phase synchronization of nonidentical oscillators.  相似文献   

12.
王利利  乔成功  唐国宁 《物理学报》2013,62(24):240510-240510
在Hindmarsh-Rose神经元动力系统中研究了Newman-Watts (NW)网络的同步,给出了一些最优同步网络的拓扑结构. 数值结果表明:NW网络的同步能力主要由耦合点在耦合空间的分布决定,耦合点分布均匀的NW网络一般具有较强的同步能力;在给定连边数的情况下,可能存在多个结构不同的最优同步网络,最优同步网络具有最强的同步能力、均匀的度分布和较好的对称性,但是其对称性不一定是最好的. 最优同步网络一般是非规则网络,但在少数情况下,规则网络也有可能是最优同步网络. 提出了一种新的网络——遍历网络,该网络具有最优同步网络的特点和很强的同步能力. 关键词: Newman-Watts网络 对称度 耦合空间 同步  相似文献   

13.
Jianshe Wu  Licheng Jiao 《Physica A》2007,386(1):513-530
A new general complex delayed dynamical network model with nonsymmetric coupling is introduced, and then we investigate its synchronization phenomena. Several synchronization criteria for delay-independent and delay-dependent synchronization are provided which generalize some previous results. The matrix Jordan canonical formalization method is used instead of the matrix diagonalization method, so in our synchronization criteria, the coupling configuration matrix of the network does not required to be diagonalizable and may have complex eigenvalues. Especially, we show clearly that the synchronizability of a delayed dynamical network is not always characterized by the second-largest eigenvalue even though all the eigenvalues of the coupling configuration matrix are real. Furthermore, the effects of time-delay on synchronizability of networks with unidirectional coupling are studied under some typical network structures. The results are illustrated by delayed networks in which each node is a two-dimensional limit cycle oscillator system consisting of a two-cell cellular neural network, numerical simulations show that these networks can realize synchronization with smaller time-delay, and will lose synchronization when the time-delay increase larger than a threshold.  相似文献   

14.
Synchronization in small-world systems   总被引:5,自引:0,他引:5  
We quantify the dynamical implications of the small-world phenomenon by considering the generic synchronization of oscillator networks of arbitrary topology. The linear stability of the synchronous state is linked to an algebraic condition of the Laplacian matrix of the network. Through numerics and analysis, we show how the addition of random shortcuts translates into improved network synchronizability. Applied to networks of low redundancy, the small-world route produces synchronizability more efficiently than standard deterministic graphs, purely random graphs, and ideal constructive schemes. However, the small-world property does not guarantee synchronizability: the synchronization threshold lies within the boundaries, but linked to the end of the small-world region.  相似文献   

15.
It has been shown that synchronizability of a network is determined by the local structure rather than the global properties. With the same global properties, networks may have very different synchronizability. In this paper, we numerically studied, through the spectral properties, the synchronizability of ensembles of networks with prescribed statistical properties. Given a degree sequence, it is found that the eigenvalues and eigenratios characterizing network synchronizability have well-defined distributions, and statistically, the networks with extremely poor synchronizability are rare. Moreover, we compared the synchronizability of three network ensembles that have the same nodes and average degree. Our work reveals that the synchronizability of a network can be significantly affected by the local pattern of connections, and the homogeneity of degree can greatly enhance network synchronizability for networks of a random nature.  相似文献   

16.
冯聪  邹艳丽  韦芳琼 《物理学报》2013,62(7):70506-070506
本文对簇间连接方式不同的三类簇网络的同步能力和同步过程进行研究. 构成簇网络的两个子网均为BA无标度网络, 当簇间连接方式是双向耦合时, 称其为TWD网络模型, 当簇间连接是大子网驱动小子网时, 称其为BDS网络模型, 当簇间连接是小子网驱动大子网时, 称其为SDB网络模型. 研究表明, 当小子网和大子网节点数目的比值大于某一临界值时, TWD网络模型的同步能力大于BDS网络模型的同步能力, 当该比值小于某一临界值时, TWD网络模型的同步能力小于BDS网络模型的同步能力, SDB网络模型的同步能力是三种网络结构中最差的. 对于簇间连接具有方向性的单向驱动网络, 簇网络的整体同步能力与被驱动子网的节点数和簇间连接数有关, 与驱动网络自身节点数无关. 增加簇间连接数在开始时会降低各子网的同步速度, 但最终各子网到达完全同步的时间减少, 网络的整体同步能力增强. 文中以Kuramoto相振子作为网络节点, 研究了不同情况下三种簇网络的同步过程, 证明了所得结论的正确性. 关键词: 簇网络 有向连接 同步能力 Kuramoto振子  相似文献   

17.
Synchronization is an important phenomenon which occurs in the dynamics of complex systems. Synchronized states emerge both from an adjustment of the system parameters and from an application of a proper external stimulus. In the present paper we study synchronized activity in a neural network model whose dynamics is driven by an external activation. In this context we are interested in its synchronizability, i.e. the existence of inputs causing the model system to synchronize. Furthermore, we investigate global synchronizability properties of stochastic network structure ensembles (instead of single realizations of a network architecture). We study the small world network, a model of preferential linking structure, and the classical Erd?s-Renyi random graph as particular examples of network topologies. Their synchronizability properties are investigated by analytical arguments and numerical simulations. Our analysis shows the emergence of synchronizable states of network ensembles for a wide range of the parameter values. In addition we observe and study the transition behaviour from synchronizability to nonsynchronizability.  相似文献   

18.
There has been mounting evidence that many types of biological or technological networks possess a clustered structure. As many system functions depend on synchronization, it is important to investigate the synchronizability of complex clustered networks. Here we focus on one fundamental question: Under what condition can the network synchronizability be optimized? In particular, since the two basic parameters characterizing a complex clustered network are the probabilities of intercluster and intracluster connections, we investigate, in the corresponding two-dimensional parameter plane, regions where the network can be best synchronized. Our study yields a quite surprising finding: a complex clustered network is most synchronizable when the two probabilities match each other approximately. Mismatch, for instance caused by an overwhelming increase in the number of intracluster links, can counterintuitively suppress or even destroy synchronization, even though such an increase tends to reduce the average network distance. This phenomenon provides possible principles for optimal synchronization on complex clustered networks. We provide extensive numerical evidence and an analytic theory to establish the generality of this phenomenon.  相似文献   

19.
杨青林  王立夫  李欢  余牧舟 《物理学报》2019,68(10):100501-100501
复杂网络的同步作为一种重要的网络动态特性,在通信、控制、生物等领域起着重要的作用.谱粗粒化方法是一种在保持原始网络的同步能力尽量不变情况下将大规模网络约简为小规模网络的算法.此方法在对约简节点分类时是以每个节点对应特征向量分量间的绝对距离作为判断标准,在实际运算中计算量大,可执行性较差.本文提出了一种以特征向量分量间相对距离作为分类标准的谱粗粒化改进算法,能够使节点的合并更加合理,从而更好地保持原始网络的同步能力.通过经典的三种网络模型(BA无标度网络、ER随机网络、NW小世界网络)和27种不同类型实际网络的数值仿真分析表明,本文提出的算法对比原来的算法能够明显改善网络的粗粒化效果,并发现互联网、生物、社交、合作等具有明显聚类结构的网络在采用谱粗粒化算法约简后保持同步的能力要优于电力、化学等模糊聚类结构的网络.  相似文献   

20.
张建宝  马忠军  张刚 《中国物理 B》2014,23(1):10507-010507
In this paper, we propose a well-designed network model with a parameter and study full and partial synchronization of the network model based on the stability analysis. The network model is composed of a star-coupled subnetwork and a globally coupled subnetwork. By analyzing the special coupling configuration, three control schemes are obtained for synchronizing the network model. Further analysis indicates that even if the inner couplings in each subnetwork are very weak, two of the control schemes are still valid. In particular, if the outer coupling weight parameter θ is larger than (n2 2n)/4, or the subnetwork size n is larger than θ2, the two subnetworks with weak inner couplings can achieve synchronization. In addition, the synchronizability is independent of the network size in case of 0 < θ < n/(n + 1). Finally, we carry out some numerical simulations to confirm the validity of the obtained control schemes. It is worth noting that the main idea of this paper also applies to any network consisting of a dense subnetwork and a sparse network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号