首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Using the standard truncated Painleve analysis,we can obtain a Backlund transformation of the (3 1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation and get some(3 1)-dimensional single-,two- and three-soliton solutions and some new types of multisoliton solutions of the (3 1)-dimensional NNV system from the Backlund transformation and the trivial vacuum solution.  相似文献   

2.
Three(2+1)-dimensional equations–KP equation, cylindrical KP equation and spherical KP equation, have been reduced to the same Kd V equation by different transformation of variables respectively. Since the single solitary wave solution and 2-solitary wave solution of the Kd V equation have been known already, substituting the solutions of the Kd V equation into the corresponding transformation of variables respectively, the single and 2-solitary wave solutions of the three(2+1)-dimensional equations can be obtained successfully.  相似文献   

3.
Using the extended homogeneous balance method, we obtained abundant exact solution structures of the (3 1)-dimensional breaking soliton equation. By means of the leading order term analysis, the nonlinear transformations of the (3 1)-dimensional breaking soliton equation are given first, and then some special types of single solitary wavesolutions and the multisoliton solutions are constructed.  相似文献   

4.
A variable separation approach is proposed and successfully extended to the (1 1)-dimensional physics models. The new exact solution of (1 1)-dimensional nonlinear models related to Schr6dinger equation by the entrance of three arbitrary functions is obtained. Some special types of soliton wave solutions such as multi-soliton wave solution,non-stable soliton solution, oscillating soliton solution, and periodic soliton solutions are discussed by selecting the arbitrary functions appropriately.  相似文献   

5.
Using the extended homogeneous balance method,the (1 1)-dimensional dispersive long-wave equations have been solved.Starting from the homogeneous balance method,we have obtained a nonlinear transformation for simplifying a dispersive long-wave equation into a linear partial differential equation.Usually,we can obtain only a type of soliton-like solution.In this paper,we have further found some new multi-soliton solutions and exact travelling solutions of the dispersive long-wave equations from the linear partial equation.  相似文献   

6.
Recently,a new decomposition of the (2 1)-dimensional Kadomtsev-Petviashvili(KP) equation to a (1 1)-dimensional Broer-Kaup (BK) equation and a (1 1)-dimensional high-order BK equation was presented by Lou and Hu.In our paper,a unified Darboux transformation for both the BK equation and high-order BK equation is derived with the help of a gauge transformation of their spectral problems.As application,new explicit soliton-like solutions with five arbitrary parameters for the BK equation,high-order BK equation and KP equation are obtained.  相似文献   

7.
张解放  吴锋民 《中国物理》2002,11(5):423-428
We study an approach to constructing multiple soliton solutions of the (3 1)-dimensional nonlinear evolution equation.We take the (3 1)-dimensional Jimbo-Miwa(JM) equation as an example.Using the extended homogeneous balance method,one can find a backlund transformation to decompose the (3 1)-dimensional JM equation into a linear partial differential equation and two bilinear partial differential equations.Starting from these linear and bilinear partial differential equations,some multiple soliton solutions for the (3 1)-dimensional JM equation are obtained by introducing a class of formal solutions.  相似文献   

8.
陈怀堂  张鸿庆 《中国物理》2003,12(11):1202-1207
A new generalized Jacobi elliptic function method is used to construct the exact travelling wave solutions of nonlinear partial differential equations (PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation which has more new solutions. More new doubly periodic and multiple soliton solutions are obtained for the generalized (3+1)-dimensional Kronig-Penny (KP) equation with variable coefficients. This method can be applied to other equations with variable coefficients.  相似文献   

9.
林机 《中国物理快报》2002,19(6):765-768
Using the standard truncated Painleve analysis and the Backlund transformation,we can obtain many significant exact soliton solutions of the (2 1)-dimensional higher-order Broer-Kaup(HBK) system.A special type of soliton solution is described by the variable coefficient heat-conduction-liker equation.The inclusion of three arbitrary functions in the general expressions of the solitons makes the solitons of the (2 1)-dimensional HBK system possess abundant structures such as solitoff solutions,multi-dromion solutions,ring solitons and so on.  相似文献   

10.
Using the (2 1)-dimensional Schwartz dcrivative, the usual (2 1)-dimensional Schwartz Kadomtsev-Petviashvili (KP) equation is extended to (n 1)-dimensional conformal invariance equation. The extension possesses Painlcvc property. Some (3 1)-dimensional examples are given and some single three-dimensional camber soliton and two spatial-plane solitons solutions of a (3 1)-dimensional equation are obtained.  相似文献   

11.
Based on the extended mapping deformation method and symbolic computation, many exact travelling wave solutions are found for the (3+1)-dimensional JM equation and the (3+1)-dimensional KP equation. The obtained solutions include solitary solution, periodic wave solution, rational travelling wave solution, and Jacobian and Weierstrass function solution, etc.  相似文献   

12.
In this article, we study the (2+1)-extension of Burgers equation and the KP equation. At first, based on a known Bäcklund transformation and corresponding Lax pair, an invariance which depends on two arbitrary functions for (2+1)-extension of Burgers equation is worked out. Given a known solution and using the invariance, we can find solutions of the (2+1)-extension of Burgers equation repeatedly. Secondly, we put forward an invariance of Burgers equation which cannot be directly obtained by constraining the invariance of the (2+1)-extension of Burgers equation. Furthermore, we reveal that the invariance for finding the solutions of Burgers equation can help us find the solutions of KP equation. At last, based on the invariance of Burgers equation, the corresponding recursion formulae for finding solutions of KP equation are digged out. As the application of our theory, some examples have been put forward in this article and some solutions of the (2+1)-extension of Burgers equation, Burgers equation and KP equation are obtained.  相似文献   

13.
张焕萍  李彪  陈勇  黄菲 《中国物理 B》2010,19(2):20201-020201
By means of the reductive perturbation method, three types of generalized (2+1)-dimensional Kadomtsev--Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.  相似文献   

14.
In a recent article(Commun. Theor. Phys. 67(2017) 207), three(2+1)-dimensional equations — KP equation, cylindrical KP equation and spherical KP equation, have been reduced to the same Kd V equation by using different transformation of variables, respectively. In this short note, by adding an adjustment item to original transformation, three more general transformation of variables corresponding to above three equations have been given.Substituting the solutions of the Kd V equation into our transformation of variables, more new exact solutions of the three(2+1)-dimensional equations can be obtained.  相似文献   

15.
The (2 1)-dimensional Boussinesq equation and (3 1)-dimensional KP equation are studied by using the extended Jacobi elliptic-function method. The exact periodic-wave solutions for the two equations are obtained.  相似文献   

16.
A (3+1 )-dimensional Kadomtse-Petviashvili (KP) equation for nonlinearly interacting intense laser pulses with an electron-positron (e-p) plasma is derived. Taking into account the combined action of the relativistic particle mass increase and the relativistic light ponderomotive force, using the perturbation method, and allowing different types solution, we discuss the analytical solution of (3+1)-dimensional KP-I equation, and give the approximate solutions of vector potential of the intense laser pulse in e-p plasma. Our results may be significantly useful in understanding the nonlinear wave propagation and interaction of intense laser beams in an e-p plasma.  相似文献   

17.
With the aid of symbolic computation system Maple, many exact solutions for the (3+1)-dimensional KP equation are constructed by introducing an auxiliary equation and using its new Jacobi elliptic function solutions, where the new solutions are also constructed. When the modulus m → 1 and m →0, these solutions reduce to the corresponding solitary evolution solutions and trigonometric function solutions.  相似文献   

18.
In this paper, an explicit N-fold Darboux transformation with multi-parameters for both a (1+1)- dimensional Broer-Kaup (BK) equation and a (1+1)-dimensional high-order Broer-Kaup equation is constructed with the help of a gauge transformation of their spectral problems. By using the Darboux transformation and new basic solutions of the spectral problems, 2N-soliton solutions of the BK equation, the high-order BK equation, and the Kadomtsev-Petviashvili (KP) equation are obtained.  相似文献   

19.
张晴帆  范恩贵 《中国物理》2007,16(6):1505-1509
This paper constructs more general exact solutions than $N$-soliton solution and Wronskian solution for variable-coefficient Kadomtsev--Petviashvili (KP) equation. By using the Hirota method and Pfaffian technique, it finds the Grammian determinant-type solution for the variable-coefficient KP equation (VCKP), the Wronski-type Pfaffian solution and the Gram-type Pfaffian solutions for the Pfaffianized VCKP equation.  相似文献   

20.
For describing various complex nonlinear phenomena in the realistic world, the higher-dimensional nonlinear evolution equations appear more attractive in many fields of physical and engineering sciences. In this paper, by virtue of the Hirota bilinear method and Riemann theta functions, the periodic wave solutions for the (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev Petviashvili (KP) equation are obtained. Furthermore, it is shown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号