首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
We present a scheme for remotely addressing single quantum dots (QDs) by means of near-field optical microscopy that simply makes use of the polarization of light. A structure containing self-assembled CdTe QDs is covered with a thin metal film presenting sub-wavelength holes. When the optical tip is positioned some distance away from a hole, surface plasmons in the metal coating are generated which, by turning the polarization plane of the excitation light, transfer the excitation towards a chosen hole and induce emission from the underlying dots. In addition, our procedure gives valuable insight into the diffusion of photo-excited carriers in the QD plane that can put limits to the addressing scheme.  相似文献   

2.
Amorphous silicon quantum dots (a-Si QDs) were grown in a silicon nitride film by plasma enhanced chemical vapor deposition. Transmission electron micrographs clearly demonstrated that a-Si QDs were formed in the silicon nitride. Photoluminescence and optical absorption energy measurement of a-Si QDs with various sizes revealed that tuning of the photoluminescence emission from 2.0 to 2.76 eV is possible by controlling the size of the a-Si QD. Analysis also showed that the photoluminescence peak energy E was related to the size of the a-Si QD, a (nm) by E(eV) = 1.56+2.40/a(2), which is a clear evidence for the quantum confinement effect in a-Si QDs.  相似文献   

3.
We report that two-photon absorption (TPA) properties of semiconductor CdSe-core CdS/ZnS-multishell quantum dots (QDs) in toluene under excitation of femtosecond laser at 800 nm. The results show efficient TPA process and large TPA cross section of three types of size QDs, which is 1900, 5710, and 16060 GM (1 GM = 10−50 cm4 s photon−1), respectively. TPA cross section dramatically increases with increased core size, showing a strong size-dependence effect. Furthermore, two-photon excitation (TPE) fluorescence intensity not only depends on TPA capacity, but also relies on improved quantum yield resulting from passivation of QD surface by different coated monolayers (MLs). These facts in combination with the narrow fluorescence bandwidth make these QDs as promising probes for multicolor two-photon microscopy.  相似文献   

4.
We report the experimental demonstration of fluorescence of CdSe quantum dots with surface plasmon excitation in deep-ultraviolet (deep-UV) region. Surface plasmon resonance in deep-UV is excited by aluminum thin film in the Kretschmann-Raether geometry. Considering the oxidation thickness of aluminum, the experimental results of incident angle dependence of reflectance show good agreement with Fresnel theory. Surface plasmon resonance with 19 nm-thick aluminum and 5 nm-thick almnina was excited at the incident angle of 48 degrees for 266 nm excitation. Fluorescence of CdSe quantum dots coated on this aluminum film was observed by the surface plasmon excitation.  相似文献   

5.
The photostability is an outstanding feature of quantum dots (QDs) used as fluorescence probes in biological staining and cell imaging. To find out the related factors in the QD photostability, the photobleaching of naked CdTe QDs and BSA coated CdSe/CdS/ZnS QDs in human hepatocellular carcinoma (QGY) cells and human nasopharynx carcinoma (KB) cells were studied under single photon excitation (SPE) and two-photon excitation (TPE). In these two cell lines the cellular QDs were irradiated by a 405 nm continuous wave laser for SPE or an 800 nm femto-second (fs) laser for TPE. The QD photobleaching with the irradiation time was found to fit a biexponential decay. The fast decay plays a dominant role in the bleaching course and thus can be used as the parameter to quantitatively evaluate the QD photostability. The TPE decreased the QD photobleaching as compared to SPE. The BSA coated core/shell QDs had improved the photostability up to 4-5 times than the naked QDs due to the shielding effect of the QD shell. Therefore, it is better to use core/shell structured QDs as the fluorescence probe combining with a TPE manner for those long-term monitoring studies.  相似文献   

6.
Single dot spectroscopy of Si quantum dots (QDs) was performed by using surface plasmon polariton (SPP)-mediated excitation in the attenuated total reflection geometry with a MgF2/Ag film on the base of a prism. Thanks to the 16 times enhancement of the incident electric field and very small background signal, PL from single Si QDs was observed clearly. This proves the usefulness of the technique for the detection of inherently weak emission of Si QDs.  相似文献   

7.
We have demonstrated the decay of spontaneous emission (SE) from AlN-GaN quantum dots (QDs) into silver surface plasmon (SP) modes in the ultraviolet at approximately 375-380 nm. Using time-resolved photoluminescence (PL), we show that the electron-hole recombination rate in AlN-GaN QDs is enhanced when SE is resonantly coupled to a metal SP mode, corresponding to the dip in the continuous-wave PL spectrum. Exciton recombination by means of silver SP modes is as much as 3-7 times faster than in normal QD SE and depends strongly on emission wavelength and thickness of the silver.  相似文献   

8.
Photoluminescent semiconductor nanocrystals, quantum dots (QDs), are nowadays one of the most promising materials for developing a new generation of fluorescent labels, new types of light-emitting devices and displays, flexible electronic components, and solar panels. In many areas the use of QDs is associated with an intense optical excitation, which, in the case of a prolonged exposure, often leads to changes in their optical characteristics. In the present work we examined how the method of preparation of quantum dot/polymethylmethacrylate (QD/PMMA) composite influenced the stability of the optical properties of QD inside the polymer matrix under irradiation by different laser harmonics in the UV (355 nm) and visible (532 nm) spectral regions. The composites were synthesized by spin-coating and radical polymerization methods. Experiments with the samples obtained by spin-coating showed that the properties of the QD/PMMA films remain almost constant at values of the radiation dose below ~10 fJ per particle. Irradiating the composites prepared by the radical polymerization method, we observed a monotonic increase in the luminescence quantum yield (QY) accompanied by an increase in the luminescence decay time regardless of the wavelength of the incident radiation. We assume that the observed difference in the optical properties of the samples under exposure to laser radiation is associated with the processes occurring during radical polymerization, in particular, with charge transfer from the radical particles inside QDs. The results of this study are important for understanding photophysical properties of composites on the basis of QDs, as well as for selection of the type of polymer and the composite synthesis method with quantum dots that would allow one to avoid the degradation of their luminescence.  相似文献   

9.
The coupling of local surface plasmon(LSP) of nanoparticle and surface plasmon(SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots(QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its corner. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.  相似文献   

10.
There is a growing interest in using quantum dots (QDs) and metallic nanoparticles (NPs), both for luminescence enhancement and surface‐enhanced Raman scattering (SERS). Here, we study the electromagnetic‐field enhancement that can be generated by lead‐sulfide (PbS) QDs using three‐dimensional finite‐element simulations. We investigate the field enhancement associated with combinations of PbS QDs with metallic NPs and substrates. The results show that high field enhancement can be achieved by combining PbS QDs with metallic NPs of larger sizes. The ideal size for Ag NPs is 25 nm, providing a SERS enhancement factor of ~5*108 for light polarization parallel to the NP dimer axis and a gap of 0.6 nm. For Au NPs, the bigger the size, the higher is the field for the studied diameters, up to 50 nm. The near‐field values for PbS QDs above metallic substrates were found to be lower compared to the case of PbS QD‐metal NP dimers. This study provides the understanding for the design and application of QDs for the enhancement of near‐field phenomena. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号