首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Pr substituted at constant Ca concentration for Y in (Y1−xyPrxCay)Ba2Cu3O7−δ superconductors have been prepared under identical conditions and the temperature dependence of the electrical resistivity of these samples are measured. The resistively determined values of Tc decrease linearly with increasing x (0 ≤ x ≤ 0.2) for constant y = 0.10 and 0.15 which provides convincing evidence that the suppression of superconductivity by Pr is mainly due to magnetic pair breaking. The suppression of superconductivity can also be correlated to the observed changes in oxygen content determined by iodometric analysis and to the average Cu-valences. However, it is found that the observed suppression of Tc cannot be compensated by appropriate hole doping with Ca.  相似文献   

2.
We have investigated the reversible mixed-state magnetization M of three lanthanum substituted Bi1.95Sr2.05−xLaxCuOy (Bi-2201) ceramic samples having different critical temperatures Tc ranging from 20.0 to 35.5 K. As for the Bi2Sr2CaCu2O8+δ (Bi-2212) phase, we found that anisotropy of Bi-2201 is large. A manifestation of this anisotropy is the field independent magnetization M* observed at a temperature T*. In the framework of the London model, and including thermal fluctuations of vortices, we found for the temperature dependence of the penetration depth λab(T) = λab(0)[1 − (T/Tc0)n]−1/2, with n 1.7 and λab (T = 0) 4000 Å. The estimated upper critical fields μ0Hc2,c are of the order of 10 T. We observe a peculiar negative slope M/T at low temperature and sufficiently high external magnetic field. This feature seems to be a characteristic of the Bi-2201 phase. However, we do not know whether it is associated with the superconducting mixed-state. A small amount of magnetic impurities could also be responsible for this behavior. Finally, the behavior of the reversible magnetization of the Bi-2201 samples investigated, which are situated at the optimal and in the overdoped region, did not indicate any unusual temperature dependence for the upper critical field Hc2,c.  相似文献   

3.
63Cu, 17O and 205Tl NMR have been performed in the high-Tc superconductor Tl2Ba2Ca2Cu3O10 whose Tc(max) is 127 K. The hole densities at Cu and oxygen sites in the CuO2 plane have been extracted from the nuclear quadrupole frequency νQ. The striking feature is that the Cu holes are significantly transferred to oxygen site due to strong hybridization between Cu and oxygen. From an analysis of T1 and T2G, it has been found that the spectral weight of the spin fluctuation is transferred to higher energy compared to YBa2Cu3O7, while the magnetic correlation length ξ does not differ much. Thus, it is suggested that the higher Tc is due to higher characteristic energy of spin fluctuations, i.e. the superconductivity is spin fluctuation mediated. The superconducting properties are consistently explained by a d-wave superconductivity model with a finite density of states (DOS) at the Fermi level. We show that the disorder of the Ca/TlO layer caused by the partial inter-substitution of Tl and Ca is responsible for the potential scattering to produce such a DOS. It is found that if such a potential scattering were absent, Tc would go up to 132 K which is quite close to the record Tc realized in the Hg based compound.  相似文献   

4.
We have measured the resistivity of textured Bi1.84Pb0.4Sr2Ca2Cu3Oy silver-clamped thick films as a function of temperature, current density ranging from 10 to 1×103 A/cm2 and magnetic field up to 0.3 T. We find that the effective activation energy Ue follows Ue(T,J,H)=U0(1−T/Tp)mln(Jc0/J)H with m=1.75 for Hab-plane and 2.5 for Hc-axis and =0.76 for Hab and 0.97 for Hc, for the current density regime above 100 A/cm2, where Tp is a function of applied magnetic field and current density. This result suggests the effective activation energy Ue be correlated with the temperature, current density and magnetic field. The possible dissipative mechanisms responsible for the temperature, current density and magnetic field dependence of the effective activation energy are discussed.  相似文献   

5.
《中国物理 B》2021,30(6):67504-067504
The magnetostriction, magnetization, and spin reorientation properties in Pr(Ga_xFe_(1-x))_(1.9) alloys have been investigated by high-precision x-ray diffraction(XRD) step scanning, magnetization, and Mo¨ssbauer spectra measurements. Ga substitution reduces the magnetostriction(λ_(||)) with magnetic field H ≥ 8 kOe(1 Oe = 1.33322×10~2 Pa), but it also increases the λ|| value when H ≤ 8 kOe at 5 K. Spin-reorientations(SR) are observed in all the alloys investigated, as determined by the step scanned XRD, Mo¨ssbauer spectra, and the abnormal temperature dependence of magnetization. An increase of the spin reorientation temperature(T_(SR)) due to Ga substitution is found in the phase diagram, which is different from the decrease one in many R(T_x Fe_(1-x))_(1.9)(T = Co, Al, Mn) alloys. The present work provides a method to control the easy magnetization direction(EMD) or T_(SR) for developing an anisotropic compensation system.  相似文献   

6.
Zero field μSR measurements were carried out on samples of the typical diluted magnetic semiconductor Cd1−xMnxTe as a function of composition in the range 0.27x0.65, at temperatures in both the “spin glass’ regions of the magnetic phase diagram. The results show the onset of complex diffusion-trapping behaviour at temperatures T60 K for all concentrations. Below 50 K the exponential relaxation found for the main signal is consistent with the interactions of the muon spin with rapidly fluctuating and rather large local hyperfine fields in these concentrated random diluted magnetic systems. In spite of the loss of signal near and below the transition temperature, the present results show that rapid spin fluctuations persist below Tg.  相似文献   

7.
The magnetic ordering in the tetragonal ternary compound U4Cu4P7 has been studied by neutron diffraction. It orders below TN = 146 K with an antiferromagnetic structure of wave vector k = (001). The magnetic ordering corresponds to a stacking of ferromagnetic (001) uranium planes according to the sequences m1, m1, m2, -m2, -m1, -m1, -m2, m2 where m1 and m2 represent the magnetic moment, directed along the tetragonal axis of the two uranium sites U(1) (0,0,± z1) and U(2) (0,0, ± z2) respectively. The magnetic moments on these two sites have different temperature dependencies as well as well as they reach the different values of 1.1 and 2.2.μB for the U(1) and U(2) sites, respectively.  相似文献   

8.
The NMR investigation of Y0.97Sc0.03Mn2 has revealed that this compound remains paramagnetic down to 4.2 K. The nuclear spin-lattice relaxation rates, 1/T1, of 55Mn and 45Sc in Y0.97Sc0.03Mn2 show the T dependence as predicted from the self-consistent renormalization (SCR) theory of spin fluctuations for nearly antiferromagnetic metals.  相似文献   

9.
The 63Cu NMR Knight shift K and spin-lattice relaxation rate 1/T1 have been measured to study the thiospinel superconductor Cu1.5Rh1.5S4 from a microscopic viewpoint. K is negative and has a weak dependence on temperature, and the hyperfine coupling constant Hhfd is estimated to be −52.4 kOe/μB. 1/T1 is proportional to the temperature in the normal state. In the superconducting state, 1/T1 takes a coherence peak just below Tc, and decreases exponentially well below Tc, from whose temperature dependence the superconducting energy gap has been proved to be close to 2Δ = 3.52kBTc given by the BCS theory.  相似文献   

10.
Magnetic transitions in La(Fe1−xCox)11.4Si1.6 compounds with x=0–0.08, have been studied by DC magnetic measurements and Mössbauer spectroscopy. The temperature dependence of the Landau coefficients has been derived by fitting the magnetization, M0H), using the Landau expansion of the magnetic free energy. For x0.02 there is a strongly first-order magnetic phase transition between ferromagnetic and paramagnetic (F–P) states in zero external field and a metamagnetic transition from paramagnetic to ferromagnetic (P–F) above Tc. Increasing the cobalt content drives the F–P transition towards second order and eliminates the metamagnetic transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号