首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixtures of bosonic and fermionic atoms in optical lattices provide a promising arena to study strongly correlated systems. In experiments realizing such mixtures in the quantum-degenerate regime the temperature is a key parameter. We investigate the intrinsic heating and cooling effects due to an entropy-preserving raising of the optical lattice, identify the generic behavior valid for a wide range of parameters, and discuss it quantitatively for the recent experiments with 87Rb and 40K atoms. In the absence of a lattice, we treat the bosons in the Hartree-Fock-Bogoliubov-Popov approximation, including the fermions in a self-consistent mean-field interaction. In the presence of the full three-dimensional lattice, we use a strong coupling expansion. We find the temperature of the mixture in the lattice to be always higher than for the pure bosonic case, shedding light onto a key point in the analysis of recent experiments.  相似文献   

2.
We present a quantitative finite temperature analysis of a recent experiment with Bose-Fermi mixtures in optical lattices, in which the dependence of the coherence of bosons on the interspecies interaction was analyzed. Our theory reproduces the characteristics of this dependence and suggests that intrinsic temperature effects play an important role in these systems. Namely, under the assumption that the ramping up of the optical lattice is an isentropic process, adiabatic temperature changes of the mixture occur that depend on the interaction between bosons and fermions. Matching the entropy of two regimes-no lattice on the one hand and deep lattices on the other-allows us to compute the temperature in the lattice and the visibility of the quasimomentum distribution of the bosonic atoms, which we compare to the experiment.  相似文献   

3.
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.  相似文献   

4.
Two-discrete breathers are the bound states of two localized modes that can appear in classical nonlinear lattices. I investigate the quantum signature of two-discrete breathers in the system of ultracold bosonic atoms in optical lattices, which is modeled as Bose–Hubbard model containing n bosons. When the number of bosons is small, I find numerically quantum two-breathers by making use of numerical diagonalization and perturbation theory. For the cases of a large number of bosons, I can successfully construct quantum two-breather states in the Hartree approximation.  相似文献   

5.
We show that one-dimensional binary mixtures of bosons or of a boson and a spin-polarized fermion are Luttinger liquids with the following instabilities: (i) For different particle densities, strong attraction between the mixture components leads to collapse, while strong repulsion leads to demixing, and (ii) For a low-density mixture of two gases of impenetrable bosons (or a spin-polarized fermion and an impenetrable boson) of equal densities, the system develops a gap and exhibits enhanced pairing fluctuations when there is attraction between the components. In the boson-fermion mixture, the pairing fluctuations occur at finite momentum. Our conclusions apply to mixtures both on the continuum and on optical lattices away from integer or fractional commensurability.  相似文献   

6.
We have studied mixtures of fermionic (40)K and bosonic (87)Rb quantum gases in a three-dimensional optical lattice. We observe that an increasing admixture of the fermionic species diminishes the phase coherence of the bosonic atoms as measured by studying both the visibility of the matter wave interference pattern and the coherence length of the bosons. Moreover, we find that the attractive interactions between bosons and fermions lead to an increase of the boson density in the lattice which we measure by studying three-body recombination in the lattice. In our data, we do not observe three-body loss of the fermionic atoms. An analysis of the thermodynamics of a noninteracting Bose-Fermi mixture in the lattice suggests a mechanism for sympathetic cooling of the fermions in the lattice.  相似文献   

7.
Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons, (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.  相似文献   

8.
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We find that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.  相似文献   

9.
We consider a quantum impurity model in which a bosonic impurity level is coupled to a non-interacting bosonic bath, with the bosons at the impurity site subject to a local Coulomb repulsion U. Numerical renormalization group calculations for this bosonic single-impurity Anderson model reveal a zero-temperature phase diagram where Mott phases with reduced charge fluctuations are separated from a Bose-Einstein condensed phase by lines of quantum critical points. We discuss possible realizations of this model, such as atomic quantum dots in optical lattices. Furthermore, the bosonic single-impurity Anderson model appears as an effective impurity model in a dynamical mean-field theory of the Bose-Hubbard model.  相似文献   

10.
We investigate theoretically soliton excitations and dynamics of their formation in strongly correlated systems of ultracold bosonic atoms in two and three dimensional optical lattices. We derive equations of nonlinear hydrodynamics in the regime of strong interactions and incommensurate fillings, when atoms can be treated as hard core bosons. When parameters change in one direction only we obtain Korteweg–de Vries type equation away from half-filling and modified KdV equation at half-filling. We apply this general analysis to a problem of the decay of the density step. We consider stability of one dimensional solutions to transverse fluctuations. Our results are also relevant for understanding nonequilibrium dynamics of lattice spin models.  相似文献   

11.
We study a mixture of fermionic and bosonic cold atoms on a two-dimensional optical lattice, where the fermions are prepared in two isospin states and the bosons have Bose-Einstein condensed. Number density fluctuations of the condensate form delocalized bosonic modes which couple to the fermionic atoms similarly to the electron-phonon coupling in crystals. We study the phase diagram for this system at fixed fermion density of one per site. We find that tuning of the lattice parameters and interaction strengths drives the system to undergo antiferromagnetic ordering, s-wave and d-wave pairing superconductivity, or a charge density-wave phase. We use functional renormalization group analysis where retardation effects are fully taken into account. We calculate response functions and also provide estimates of the energy gap associated with the dominant order, and how it depends on different parameters of the problem.  相似文献   

12.
We show the emergence of a strongly interacting Bose-Fermi mixture from a two-component Fermi mixture with population imbalance. By analyzing in situ density profiles of 6Li atoms in the BCS-BEC crossover regime, we identify a critical interaction strength, beyond which all minority atoms pair up with majority atoms and form a Bose condensate. This is the regime where the system can be effectively described as a boson-fermion mixture. We determine the dimer-fermion and dimer-dimer scattering lengths and beyond-mean-field contributions. Our study realizes a gedanken experiment of bosons immersed in a Fermi sea of one of their constituents, revealing the composite nature of the bosons.  相似文献   

13.
We study the transition to fermion pair superfluidity in a mixture of interacting bosonic and fermionic atoms. The fermion interaction induced by the bosons and the dynamical screening of the condensate phonons due to fermions are included using the nonperturbative Hamiltonian flow equations. We determine the bosonic spectrum near the transition towards phase separation and find that the superfluid transition temperature may be increased substantially due to phonon damping.  相似文献   

14.
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.  相似文献   

15.
We study the nature of the ground state of the two-dimensional extended boson Hubbard model on a square lattice by quantum Monte Carlo methods. We demonstrate that strong but finite on-site interaction U along with a comparable nearest-neighbor repulsion V result in a thermodynamically stable supersolid ground state for densities larger than 1/2, in contrast to fillings less than 1/2 or for very large U, where the checkerboard supersolid is unstable towards phase separation. We discuss the relevance of our results to realizations of supersolids using cold bosonic atoms in optical lattices.  相似文献   

16.
In this paper, we present results of our calculations on the effects of next-to-nearest-neighbour boson hopping (t′) energy on Bose-Einstein condensation in cubic lattices. We consider both non-interacting and repulsively interacting bosons moving in the lowest Bloch band. The interacting bosons are studied using Bogoliubov method. We find that the Bose condensation temperature is enhanced by increasing t′ for bosons in a simple cubic (sc) lattice and decreases for bosons in body-centred cubic (bcc) and face-centred cubic (fcc) lattices. We also find that interaction-induced depletion of the condensate is reduced for bosons in an sc lattice while it is enhanced for bosons in bcc and fcc lattices.  相似文献   

17.
Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizably lower number of fermions in the presence of a deep optical lattice.  相似文献   

18.
We consider either 3 spinless bosons or 3 equal mass spin-1/2 fermions, interacting via a short-range potential of infinite scattering length and trapped in an isotropic harmonic potential. For a zero-range model, we obtain analytically the exact spectrum and eigenfunctions: for fermions all the states are universal; for bosons there is a coexistence of decoupled universal and efimovian states. All the universal states, even the bosonic ones, have a tiny 3-body loss rate. For a finite range model, we numerically find for bosons a coupling between zero angular momentum universal and efimovian states; the coupling is so weak that, for realistic values of the interaction range, these bosonic universal states remain long-lived and observable.  相似文献   

19.
We summarize in the present work exact results obtained for Tonks-Girardeau gases on one-dimensional optical lattices both for the ground state and nonequilibrium dynamics. On the theoretical side, impenetrable bosons offer the opportunity to study strongly interacting systems in one-dimensional lattices exactly, by means of the Jordan-Wigner transformation, and hence contribute to the topic of strong correlations at the center of interest in both condensed matter physics and quantum gases. This motivation is further enhanced by recent experimental realizations of such systems with ultracold atoms. After having shown their universal properties in equilibrium, we concentrate on their nonequilibrium dynamics. It will be shown that, starting from a pure Fock state, quasi-long-range correlations develop dynamically and lead to the formation of quasicondensates with a momentum determined by the underlying lattice. We expect this effect to be relevant for atom lasers with full control of the wavelength. Then, we will show that the free evolution of an initially confined Tonks-Girardeau gas leads to a momentum distribution that approaches at long times that of the equivalent fermionic system, giving rise to a bosonic gas with a Fermi edge, and hence a fermionization that can only be obtained out of equilibrium. Remarkably, although the momentum distribution function of the Tonks-Girardeau gas becomes equal to the one of the fermions, no loss in coherence is observed in the system, as reflected by a large occupation of eigenstates of the one-particle density matrix.  相似文献   

20.
We show that the current method of determining superfluidity in optical lattices based on a visibly sharp bosonic momentum distribution n(k) can be misleading, for even a normal Bose gas can have a similarly sharp n(k). We show that superfluidity in a homogeneous system can be detected from the so-called visibility (v) of n(k)--that v must be 1 within O(N(-2/3)), where N is the number of bosons. We also show that the T=0 visibility of trapped lattice bosons is far higher than what is obtained in some current experiments, suggesting strong temperature effects and that these states can be normal. These normal states allow one to explore the physics in the quantum critical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号