首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The rotational spectrum of isoamyl acetate, H3C–COO–(CH2)2–CH(CH3)2, has been recorded and assigned using a molecular beam Fourier transform microwave (MB-FTMW) spectrometer in the frequency range of 3–26.5?GHz. One conformer has been observed. By comparing the spectroscopic data with the quantum chemical data, it was found that the conformer observed does not have Cs symmetry. The rotational and centrifugal distortion constants were determined. The barrier to internal rotation of the acetate methyl group was found to be 93.98?cm?1. Due to the high number of the conformers, a systematic nomenclature will be presented.  相似文献   

2.
Abstract

Methyl arsine is very nearly a prolate symmetric-top molecule. Although its exact structure is not known, the moments of inertia can be calculated from a reasonable (assumed) structure (see Fig. 1). The rotational constants (A″ = 2.160 cm?1, B″ = 0.2951 cm?1, C″ ?0.2940 cm?1) obtained from this structure are not greatly different from those of another study (1) and reflect the near symmetric-top character of the molecule. Indeed, most of the perpendicular bands show very small splitting of the two components (A′ and A″ for Cs point group to which methyl arsine belongs) which would be exactly degenerate in the symmetric-top molecule, in which two of the three rotational constants are identical.  相似文献   

3.
Abstract

The high resolution (0.0010cm?1) Fourier transform infrared spectra of the partially deuterated methyl iodide molecules CH2DI and CHD21 have been recorded and analysed in the ν3 band regions around 510cm?1. The fundamental band ν3 is associated with the stretching of the C-I bond and the spectra appear therefore as an asymmetric rotor hybrid a/b-type band and hybrid a/c-type band for CH2DI and CHD2I, respectively. About 4700 transitions in the case of CH2DI and about 3900 transitions in the case of CHD2I have been assigned. The ground state rotational constants of CH2DI and CHD2I have been obtained using the ground state combination differences calculated from the assigned ν3 transitions and 16 microwave transitions from literature. The S reduced Watson's Hamiltonian has been used in the calculations. In addition, the upper state parameters describing the v3=1 vibrational states of these molecules have been determined. The obtained ground state constants as well as the upper state parameters have been compared to the corresponding constants of the symmetric top species CH3I and CD3I  相似文献   

4.
Rotational transitions of CH3CCSiH3 have been observed in the millimeter-wave region using a computer-controlled source-frequency modulation spectrometer with a 1.8-m-long free space absorption cell. The observed spectrum clearly showed the effect of internal rotation with a small potential barrier. It has been analyzed by calculating the torsion-rotation energies on the basis of torsional wave functions obtained by diagonalizing the torsional part of the Hamiltonian. The least-squares analysis has yielded the rotational constant B = 2068.2817(4) MHz and a few centrifugal distortion constants. The barrier height to internal rotation has been determined to be 3.77(70) cm?1 from the contour map of the standard deviation. Also, the A rotational constant of the silyl group around the symmetry axis has been estimated by fixing the A constant of the methyl group to the value of CH3CCH.  相似文献   

5.
ABSTRACT

The rotational spectrum of 3-pentyn-1-ol, CH3?C≡C?CH2CH2OH, was measured using a molecular beam Fourier transform microwave spectrometer operating in the frequency range from 2 to 26.5 GHz. A two-dimensional potential energy surface was calculated at the MP2/6-311++G(d,p) level of theory for a conformational analysis, yielding five conformers. The most stable conformer exhibits C1 symmetry and was assigned in the spectrum by comparison with the results from quantum chemical calculations. The barrier to internal rotation of the propynyl methyl group CH3?C≡C? was found to be only 9.4552(94) cm?1. Molecular parameters and internal rotation parameters could be accurately determined using the program xiam and belgi-C1. The internal rotation barrier was compared with those of other molecules containing a propynyl methyl group.  相似文献   

6.
The microwave spectra of CH2DCOOH and CHD2COOH have been studied by means of microwave-microwave double resonance. For the asy rotamers torsional splittings (5898 and 530 MHz, respectively) and effective rotational constants were determined in the ground state. Effective barrier parameters were provisionally estimated and used to predict excited-state spectra. Here significant interaction between sy and asy rotamers occurred, and a Hamiltonian based on an extension of the IAM method to the case of an asymmetric internal rotor was used to account for the spectra. A few direct sy-asy transitions were observed as well as spectra originating from the second excited torsional state. Effective potential energy coefficients, V1 through V6, were determined accurately; apart from V3 and V6, which are comparable to values in CH3COOH and CD3COOH, large V2 terms occur (28.5 cm?1 in CH2DCOOH and ?25.4 cm?1 in CHD2COOH). These terms provide localization in the ground state wave functions, and can be rationalized as arising from the zero-point energies of the other normal vibrations. Also determined were Fourier components of the rotational constants, which were in fair agreement with results from model calculations when geometry relaxation was included. After correction of the ground state inertial moments for effects of the torsion a consistent set of inertial moments was obtained for the various isotopic species, and a complete substitution structure could be determined. The HCH angles in the methyl group were found to differ by 2.7°.  相似文献   

7.
ABSTRACT

The atmospheric oxidation mechanisms of 1- and 2-propenol initiated by OH radical have been theoretically investigated at the CCSD(T)//BH&;HLYP/6-311?+?+G(d,p) level of theory. Conventional transition state theory was employed to predict the rate constants for the initial reaction channels. The calculations clearly indicate that OH-addition channels contribute maximum to the total reaction, both for 1- and 2-propenol, while H-abstraction channels can be neglected at the temperature range of 220–520?K. The calculated total rate constants at 298?K are 1.66?×?10?11 and 7.69?×?10?12 cm3?molecule?1?s?1 respectively for 1- and 2-propenol, which are in reasonable agreement with the experimental values of similar systems (vinyl ethers?+?OH reactions). The deduced Arrhenius expressions are k(OH?+?1-propenol)?=?1.43?×?10?12 exp[(743.7?K)/T] and k(OH?+?2-propenol)?=?2.86?×?10?12 exp[(310.5?K)/T] cm3?molecule?1?s?1. Under atmospheric condition, the OH-addition intermediates (CH3C?HCH(OH)2, CH3CH(OH)C?H(OH), CH3CH(OH)2?CH2, CH3?C(OH)CH2(OH)) are likely to react rapidly with O2, the theoretically identified major products for 1-propenol are HCOOH, CH3CHO and CH3CH(OH)CHO, and the dominant products for 2-propenol are CH3COOH, HCHO and CH3COCH2OH, both companied with the regeneration of OH and HO2 radicals (crucial reactive radicals in the atmosphere).  相似文献   

8.
The rotational spectra of nine isotopomers of dimethyl diselenide, CH3SeSeCH3, have been measured with a molecular-beam Fourier transform microwave spectrometer. The spectra were complex due to the presence of many isotopomers in natural abundance and the splitting caused by the interactions with two methyl internal rotors. The spectra were assigned and fit to experimental precision to an effective rotational Hamiltonian for molecules with two periodic internal motions. The spectra of the symmetric isotopomers are consistent with a C2 equilibrium structure. The rotational constants were used to determine the rs structure of the C-Se-Se-C frame with the results r(SeSe)=2.306(3) Å, r(SeC)=1.954(6) Å, ?(CSeSe)=99.8(2)°, ?(CSeSeC)=85.2(1)°. A barrier to internal rotation of the methyl groups of 395 ± 2 cm−1 was derived from the internal rotation splittings.  相似文献   

9.
Abstract

The rotational Raman spectra of four vapor phase isotopic methanols, CH3OH, CH3OD, CD3OH and CD3OD, have been reported for the first time in the wavenumber regions from 5 to 100–120 cm?1. The major parts of the spectra consist of bands equispaced at 3.19, 3.04, 2.56 and 2.46 cm?1 intervals, respectively, and have been interpreted as the pure rotational S-branch transitions.  相似文献   

10.
The rotational spectrum of (CH3OH)2 has been observed in the region 4-22 GHz with pulsed-beam Fabry-Perot cavity Fourier-transform microwave spectrometers at NIST and at the University of Kiel. Each a-type R(J), Ka = 0 transition is split into 15 states by tunneling motions for (CH3OH)2, (13CH3OH)2, (CH3OD)2, (CD3OH)2, and (CD3OH)2. The preliminary analysis of the methyl internal rotation presented here was guided by the previously developed multidimensional tunneling theory which predicts 16 tunneling components for each R(J) transition from 25 distinct tunneling motions. Several isotopically mixed dimers of methanol have also been measured, namely 13CH3OH, CH3OD, CD3OH, and CD3OD bound to 12CH3OH. Since the hydrogen bond interchange motion (which converts a donor into an acceptor) would produce a new and less favorable conformation from an energy viewpoint, it does not occur and only 10 tunneling components are observed for these mixed dimers. The structure of the complex is similar to that of water dimer with a hydrogen bond distance of 2.035 Å and a tilt of the acceptor methanol of 84° from the O-H-O axis. The effective barrier to internal rotation for the donor methyl group of (CH3OH)2 is ν3 = 183.0 cm−1 and is one-half of the value for the methanol monomer (370 cm−1), while the barrier to internal rotation of the acceptor methyl group is 120 cm−1.  相似文献   

11.
ABSTRACT

We present the first investigation of the ν8 band (C–C symmetric stretch at 870.3137?cm?1), together with an extended analysis of the neighbouring ν21 band (CH3 rock at 921.3756?cm?1) of propane (C3H8). Our previous investigation of the ν21 A-type band [A.Perrin, F. Kwabia-Tchana, J.M.Flaud, L.Manceron, P.Groner, W.J.Lafferty. J. Mol. Spectrosc. 315, 55 (2015)] revealed that the rotational energy levels of 211 are split because of interactions with the internal rotations of the methyl groups, leading to the identification of AA, EE, AE and EA torsional components. In this work, a similar behaviour was observed for the B-type ν8 band and the analysis of the ν21 band was greatly extended. One of the results of the present study is to show that these torsional splittings are due to the existence of anharmonic and Coriolis resonances, coupling the 211 and 81 rotational levels to nearby highly excited levels of the two internal rotations of the methyl groups. Accordingly, an effective ‘vibration – torsion- rotation’ Hamiltonian model was built in the G36 symmetry group which accounts for both types of resonances. In parallel, a code computing the line intensities was developed to allow unambiguous torsional component assignments. The line assignments were performed using a high resolution (0.0015?cm?1) infrared spectrum of propane, recorded with synchrotron radiation at the SOLEIL French light source facility coupled to a Bruker IFS-125 Fourier transform spectrometer. Finally, a linelist of positions and intensities which can be used for the detection of propane in the Earth and outer planets atmospheres was produced.  相似文献   

12.
The high-resolution Fourier transform infrared spectrum of phosphorus trifluoride (PF3) has been reinvestigated in the v2?=?1 vibrational excited state near 487?cm?1 (at a resolution of 3?×?10–3?cm–1). Thanks to our new accurate rotational ground-state C 0 value, 0.159970436(69)?cm–1, and to recent pure rotational measurements, 318 new infrared transitions of the ν 2 fundamental band have been assigned, extending the rotational quantum number values up to K max?=?71 and J max?=?72. A merge, for the first time, of 135 reported microwave data (K max?=?42 and J max?=?49) within the v2?=?1 excited level and 2860 rovibrational transitions yielded improved constants of ν 2. Parameters of this band have been obtained, up to sextic centrifugal distortion constants, by least-squares fits, σ IR?=?3.60?×?10–4?cm–1 and σ MW?=?5.53?×?10–6?cm–1 (166?kHz). Comparison of these constants with those measured previously by infrared spectroscopy reveals orders of magnitude higher accuracy of these new values.  相似文献   

13.
The microwave spectra of three isotopic species of methoxyamine (CH3ONH2) have been studied. For the normal species the ground-state rotational constants are A = 42488 ± 150 MHz, B = 10049.59 ± 0.03 MHz, and C = 8962.85 ± 0.03 MHz. From these data and those from the -NHD and -ND2 species, the amino protons have been shown to occupy a symmetrical trans position relative to the methyl group. The barrier to internal rotation of the methyl group has been found to be 873 ± 15 cm?1 by analysis of ground-state splittings. Analysis of hyperfine splittings has yielded the 14N quadrupole coupling constants, which have the following values for the normal isotopic species: χaa = 3.63 ± 0.03 MHz, χbb = ?3.69 ± 0.07 MHz, and χcc = 0.06 ± 0.07 MHz.  相似文献   

14.
《Molecular physics》2012,110(17):2111-2135
We report a detailed reinvestigation of the ν2?+?2ν3 combination band of methane 12CH4 centred at (7510.3378?±?0.003)?cm?1 ((225.154263?±?0.0001)?THz) within the icosad of the overtone absorption. A new experimental setup is described, allowing us to carry out cw-laser cavity ring-down spectroscopy (cw-CRDS) at instrumental resolution in the MHz range in seeded supersonic jet expansions down to rotational temperature of 7?K compared to previous cw-CRDS measurements in our group achieving about 50?K in expansions of neat CH4. We provide a careful re-analysis on the basis of our new experimental results for the Q and R branch transitions including data obtained between about 7 and 300?K under various conditions. We resolve previously observed discrepancies of assignments and are able to present a definitive assignment for lines involving angular momentum quantum numbers up to J?=?4. The analysis of relative intensities in spectra taken at rotational and effective translational temperatures between about 50?K and less than 10?K indicate conservation of nuclear spin symmetry upon supersonic jet expansion, in agreement with previous results using other techniques and covering other spectral ranges.  相似文献   

15.
Sulfur–Oxygen containing hydrocarbons are formed in oxidation of sulfides and thiols in the atmosphere, on aerosols and in combustion processes. Understanding their thermochemical properties is important to evaluate their formation and transformation paths. Structures, thermochemical properties, bond energies, and internal rotor potentials of methyl sulfinic acid CH3S(?O)OH, its methyl ester CH3S(?O)OCH3 and radicals corresponding to loss of a hydrogen atom have been studied. Gas phase standard enthalpies of formation and bond energies were calculated using B3LYP/6‐311G (2d, p) individual and CBS‐QB3 composite methods employing work reactions to further improve accuracy of the ${\Delta} _{{\bf f}} H_{{\bf 298}}^{{\bf o}} $ . Molecular structures, vibration frequencies, and internal rotor potentials were calculated. Enthalpies of the parent molecules CH3S(?O)OH and CH3S(?O)OCH3 are evaluated as ?77.4 and ?72.7 kcal mol?1 at the CBS? QB3 level; Enthalpies of radicals C?H2? S(?O)? OH, CH3? S?(?O)2, C?H2? S(?O)? OCH3 and CH3? S(?O)? OC?H2 (CBS‐QB3) are ?25.7, ?52.3, ?22.8, and ?26.8 kcal mol?1, respectively. The CH3C(?O)O—H bond dissociation energy is of 77.1 kcal mol?1. Two of the intermediate radicals are unstable and rapidly dissociate. The CH3S(?O)? O. radical obtained from the parent CH3? S(?O)? OH dissociates into methyl radical (${\bf CH}_{{\bf 3}}^{{\bf .}} $ ) plus SO2 with endothermicity (ΔHrxn) of only 16.2 kcal mol?1. The CH3? S(?O)? OC?H2 radical dissociates into CH3? S?=O and CH2=O with little or no barrier and an exothermicity of ?19.9 kcal mol?1. DFT and the Complete Basis Set‐QB3 enthalpy values are in close agreement; this accord is attributed to use of isodesmic work reactions for the analysis and suggests this combination of B3LYP/work reaction approach is acceptable for larger molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Rate constants for the reactions of Cl atoms with CH3OCHCl2 and CH3OCH2CH2Cl were determined at (296 ± 2) K and atmospheric pressure using synthetic air as bath gas. Decay rates of these organic compounds were measured relative to the following reference compounds: CH2ClCH2Cl and n‐C5H12. Using rate constants of 1.33 × 10?12 and 2.52 × 10?10 cm3 molecule?1 sec?1 for the reaction of Cl atoms with CH2ClCH2Cl and n‐C5H12, respectively, the following rate coefficients were derived: k(Cl + CH3OCHCl2) = (1.05 ± 0.11) × 10?12 and k(Cl + CH3OCH2CH2Cl) = (1.14 ± 0.10) × 10?10, in units of cm3 molecule?1 s?1. The rate constants obtained were compared with previous literature data and a correlation was found between the rate coefficients of some CH3OCHR1R2 + Cl reactions and ΔElectronegativity of ? CHR1R2. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The rotational structure of the infrared band ν1 of CH3I has been studied at a resolution of 0.04 cm?1 using a grating spectrometer. In the analysis including 470 lines a resonance, explained to be caused by ν2 + 2ν6±2, has been taken into account. The molecular constants derived include, e.g., α1A = 0.051129(14) cm?1 and α1B = 0.0983(9) × 10?3 cm?1.  相似文献   

18.
The avoided-crossing molecular-beam electric-resonance technique was applied to methyl silane in the ground torsional state. A new type of anticrossing is introduced which breaks the torsional symmetry and obeys the selection rules ΔJ = 0, K = +1 /a3 ?1. For these “barrier” anticrossings, the values of the crossing fields Ec yield directly the internal rotation splittings; the Ec are independent of the difference (A-B) in the rotational constants. Such anticrossings were observed for J from 1 to 6. Studies were also conducted of several “rotational” anticrossings (J, K) = (1, ±1) /a3 (2, 0) for which Ec does depend on (A-B). The normal rotational transition (J, K) = (1, 0) ← (0, 0) was observed in the ground torsional state using the molecular beam spectrometer. The present data on CH328SiH3 were combined with Hirota's microwave spectra and analyzed with the torsion-rotation Hamiltonian including all quartic centrifugal distortion terms. In addition to evaluating B and several distortion constants, determinations were made of the moment of inertia of the methyl top Iα = 3.165(5) amu-Å2, the effective rotational constant Aeff = 56 189.449(32) MHz, and the effective height of the threefold barrier to internal rotation V3eff = 592.3359(73) cm?1. The correlations leading to these two effective constants are discussed and the true values of A and V3 are determined within certain approximations. For the isotopic species CH330SiH3, barrier and rotational anticrossings were observed. The isotopic changes in A and V3 were determined, as well as an upper limit to the corresponding change in Iα.  相似文献   

19.
The microwave spectrum of methyltrichlorogermane has been investigated in the region 26.5 to 40.0 GHz. The ground state rotational constants, B, were found to be 1602.19, 1601.42, 1601.10, 1600.71, 1600.02, 1537.84, 1537.10, and 1536.36 MHz for the symmetric top molecules CH370Ge35Cl3, CH372Ge35Cl3, CH373Ge35Cl3, CH374Ge35Cl3, CH376Ge35Cl3, CH370Ge37Cl3, CH372Ge37Cl3, and CH374Ge37Cl3, respectively. For the asymmetric top molecules CH372Ge35Cl237Cl and CH374Ge35Cl237Cl the ground state rotational constants A, B, and C were found to be 1597.96, 1559.31, 1203 and 1597.17, 1558.59, 1207 MHz, respectively. From the rotational constants the rs values for the GeCl bond distance of 2.135 ± 0.006 Å and the CGeCl bond angle of 106.0 ± 0.7° were obtained. The centrifugal distortion constant for the CH3Ge35Cl3 species was calculated to be 0.35 ± 0.08 kHz. The Raman spectra of methyltrichlorogermane has been recorded in the gas phase and the methyl torsional overtone (Δν = 2) was observed. From the observed frequency shift the barrier to internal rotation has been calculated to be 1.45 kcal/mole.  相似文献   

20.
The equilibrium bond length and the shape of the complete potential energy curve for the methyl radical CH3 are determined. This is done by fitting the experimental data [mainly from C. Yamada, E. Hirota, and K. Kawaguchi, J. Chem. Phys.75, 5256–5264 (1981)] using the nonrigid invertor Hamiltonian and a model anharmonic potential function. As a result the v2 (out-of-plane bending) dependence of the rotational constants is explained and the v2 dependence of the spin-rotation coupling constants is modeled. In addition, some of the vibrational energies and rotational, centrifugal distortion, and spin-rotation constants are predicted for the 13CH3, 12CD3, and 12CT3 isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号