首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The Zeeman effect, magnetization, and differential susceptibility of a DyLiF4 crystal in a pulsed magnetic field are studied experimentally and theoretically. It is found that Dy3+ ion levels in DyLiF4 approach each other and a crossover occurs in a magnetic field H ‖ [001], which leads to a smearing of peaks in the differential magnetic susceptibility dM/dH and to inflection points in the magnetization curves M(H) at low temperatures. It is demonstrated that magnetic anomalies that accompany the crossover in DyLiF4 in a field H ‖[001] are sensitive to the electronic structure of the Dy3+ ion. Therefore, these anomalies can be used to refine the crystal-field parameters. The effects of variations in the crystal field and temperature and of a deviation of the direction of the magnetic field from the symmetry axis on the magnitude and character of the magnetic anomalies associated with the crossover are investigated. The crystal field and crossover effects in the scheelite structure are compared with those in the zircon structure.  相似文献   

2.
Magnetization measurements of polycrystalline SmFe2 are interpreted in terms of a ferrimagnetic coupling between the Sm+3 and iron moments. A sign reversal of 〈Sz〉 relative to 〈Lz+Sz〉 is obtained by single-ion crystal-field calculations of the Sm+3 moment.  相似文献   

3.
Neutron diffraction measurements, made on powder samples, show that Ho4Co3 and Er4Co3 intermetallic compounds are ferrimagnetic at 4.2 K. The magnetic moments of the 2 holmium sites are 8.7 and 2.1 μB and those of the erbium sites are equal to 8.7 and 8.1μB. The cobal+ magnetic moment is 0.2μB for both compounds. The easy magnetization direction lies on the hexagonal plane for Ho4Co3 while for Er4Co3 there are 2 anisotropy directions. Exchange interactions between rare-earth ions of both sites are very weak compared with the total crystal field splitting of the ground state multiplet J. The crystal field parameters are calculated and the magnitude and direction of the rare-earth magnetic moments in each site is determined.  相似文献   

4.
The crystal-field model is applied to a series of scheelites crystals (CaWO4, SrWO4, PbWO4, BaWO4, CdMoO4, CaMoO4, SrMoO4 and PbMoO4) doped with the Yb3+ ion. The calculated crystal-field parameters present a general trend of variation with M2+ ionic radius of the host cation. The maximum splitting ΔE of the 2F7/2 manifold of the Yb3+ ion is then obtained as a function of NV crystal-field strength parameters. The agreement between experimental results and theoretical predictions for all investigated systems is very satisfactory. The crystal-field effects are very important for the prediction of emission energies of the Yb3+ ion in different scheelites.  相似文献   

5.
Polycrystalline samples of a new rare-earth series RPd5Al2 crystallizing in the tetragonal ZrNi2Al5-type structure have been prepared. Their physical properties by electrical resistivity ρ, magnetic susceptibility χ, magnetization M and specific heat Cp measurements are reported. The ingots are composed of elongated grains preferentially aligned in the c direction; therefore, measurements were conducted parallel and perpendicular to the grains. Antiferromagnetic ordering appears in R=Ce, Nd, Gd, and Sm at low temperatures. CePd5Al2 has two AFM transitions at 4.1 and 2.9 K and ρ(T) indicates a Kondo metal behavior with large anisotropy. In PrPd5Al2 no magnetic transition was observed down to 0.4 K. The Cp(T) shows a broad peak around 13 K due to the CEF effect, suggesting a non-magnetic singlet ground state. In NdPd5Al2, χ(T) shows anisotropy and the Cp(T) shows a sharp peak at 1.2 K. The magnetic entropy at 3 K is very close to Rln2, indicating a Kramers doublet ground state. In SmPd5Al2, Cp(T) shows a magnetic transition at 1.7 K. Cp(T) for GdPd5Al2 shows a peak at 6 K, followed by a broad anomaly around 3 K. Within this series, TN's for CePd5Al2 and NdPd5Al2 clearly deviate from the relation predicted by de Gennes scaling, which is ascribed to the CEF effect.  相似文献   

6.
The spin echo NMR spectra of 59Co in R2(Co1-xMnx)17, (R = Y, Gd) measured at 4.2 K are reported. The large shift of resonance lines is observed, that is explained as caused by reorientation of easy axis of magnetisation from easy plane to easy direction (c axis). It is suggested to explain quantitatively the spectra, that only two of four Co sites (9d and 18f) in R2Co17 structure play a dominant role in determining of anisotropy energy and the Co atoms at the 6c sites (“dumb-bell” atoms) give no direct contribution to the anisotropy energy of the compound. The corresponding changes of local anisotropy energy and the orbital part of cobalt magnetic moment characteristic for each of cobalt structural sites are calculated and discussed.  相似文献   

7.
When a spin-triplet superconductor is attached to a ferromagnet, the tunneling conductance depends not only on the degree of the spin polarization but also sensitively on the relative angles between the magnetic moment in ferromagnet and the d-vector in spin-triplet superconductor. We study theoretically the tunneling conductance in ferromagnet/triplet superconductors assuming three nodal unitary gap functions, which are promising candidates for the pairing symmetry of Sr2RuO4. Our results suggest that the d-vector direction in Sr2RuO4 may be detected by performing angular dependent tunneling spectroscopy in this hybrid structure. We also show that these three gap functions can be distinguished by their distinctive conductance spectra.  相似文献   

8.
The systems RFe6Al6(R = Y, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) crystallize in the tetragonal body centered I4/mmm structure. In striking contrast to the magnetic behaviour of RFe4Al8 (weakly coupled R and Fe sublattices, complicated magnetic structure, low Tc ~ 130 K), in the RFe6Al6 systems all magnetic sublattices order simultaneously at a relatively high temperature. The magnetization curves start with low values at low temperatures and rise to very high values at Tmax ~ 230 K and then drop to 0 at Tc ~ 330 K. All samples show strong hysteresis effects at temperatures just below Tmax. Mossbauer studies of 57Fe in the (f) and (j) sites and 151Eu, 155Gd, 161Dy, 166Er and 170Yb in the (a) site yield all hyperfine interaction parameters and temperature dependence of the local magnetic moments. All Mossbauer and magnetization experimental results can be explained in a self consistent way with a simple molecular field model. The Fe in the (j) site plays the dominant role in its strong intrasublattice ferromagnetic exchange and its strong antiferromagnetic exchange with the rare earth site. The Fe in the (f) site have an antiferromagnetic intrasublattice exchange, they have a canted strcuture with the ferromagnetic component parallel to the (j) sublattice magnetization.  相似文献   

9.
We report on a series of neutron experiments on stoichiometric PrO2. The material, which has the cubic CaF2 structure, orders antiferromagnetically at 14 K with a type I magnetic structure as found in UO2. The ordered moment is 0.6 ± 0.1 μB/Pr atom. No lattice distortion has been observed below TN with a high-resolution neutron-diffraction experiment. Neutron inelastic scattering at the Intense Pulsed Neutron Source, Argonne National Laboratory, has been used to determine the crystal-field splitting of 130 ± 5 meV between the Γ8 ground state and the Γ7 excited state of the J = 52 multiplet. This represents the first direct observation of a crystal-field splitting in the rare-earth or actinide dioxides, and the largest such electronic splitting ever observed by neutron scattering. We propose that the ground state of PrO2 is the Γ8 quartet with the degeneracy lifted by a dynamic Jahn-Teller effect. The A4r4〉 crystal field potential term for PrO2 is - (57 ± 3) meV, and the significance of this determination for other oxides is discussed.  相似文献   

10.
The variation of the magnetic properties of the system Fe2P1?yAsy, in the structure range of Fe2P, enables us to derive a band model for these compounds. It is characterized by very narrow d bands splitted by the crystal-field. The bandwidth is close to the exchange interactions and to the crystal-field splitting. The model, extended to the series Fe2?xMxP1?yAsy, where M = Mn, Fe, Co, Ni is able to explain magnetic, electric and hyperfine results.  相似文献   

11.
A neutron diffraction study of polycrystalline RECo2Si2 intermetallics (RE = Pr, Nd, Tb, Ho, Er) carried out at liquid helium temperature shows the presence of a collinear antiferromagnetic ordering of +?+? type. Magnetic moment is localized on RE ions only and amounts to the RE3+ free ion value. In ErCo2Si2 the magnetic moment is normal to the tetragonal unique axis, whereas in the remaining compounds the magnetic moment is aligned along it. Néel points were determined from the temperature dependence of magnetic peak heights.  相似文献   

12.
The attenuation coefficient of longitudinal sound waves propagating in ErRh4B4 has been measured as a function of applied magnetic field where the propagation direction (q) of the sound waves was oriented either parallel or perpendicular to Happlied. For both orientations there is evidence of a type II-1 superconducting transition at Hc1 for T ≈ 1.5 K. In addition, when qH an increase in attenuation is evident at Hc2, which does not appear when q 6 H, consistent with theories developed by Tachiki et al. utilizing supercurrent screening of the internal magnetic fields.  相似文献   

13.
The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni)=0.2–0.5 in the nickel-based solid solution ErNixMn1−xO3, while it can be extended up to x(Co)=0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1−xO3, a critical concentration xcrit(Ni)=1/3 separates two regimes: spin-canted AF interactions predominate at x<xcrit, while the ferromagnetic behavior is enhanced for x>xcrit. Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at Tc, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T−1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50=Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate.  相似文献   

14.
15.
The magnetic susceptibility of Pb1-xCexA (A=S, Se and Te) crystals with Ce3+ concentrations 0.006≤x≤0.036 was investigated in the temperature range from 2 K to 300 K. The magnetic susceptibility data was found to be consistent with a 2F5/2 lowest manifold for Ce3+ ions with a crystal-field splitting Δ=E(Γ8)−E(Γ7) of about 340 K, 440 K and 540 K for Pb1-xCexTe, Pb1-xCexSe, and Pb1-xCexS, respectively. For all the three compounds the doublet Γ7 lies below the Γ8 quadruplet which confirms the substitution of Pb2+ by Ce3+ ions in the host crystals. The observed values for the crystal-field splitting are in good agreement with the calculated ones based on the point-charge model. Moreover, the effective Landé factors were determined by X-band (∼9.5 GHz), electron paramagnetic measurements (EPR) to be g=1.333, 1.364, and 1.402 for Ce ions in PbA, A = S, Se and Te, respectively. The small difference with the predicted Landé factor g of 10/7 for the Γ7 (J=5/2) ground state was attributed to crystal-field admixture.  相似文献   

16.
The g factor of Cr4+ in Y2SiO5 crystal is calculated from a completed high-order perturbation formula, in which not only the conventional contribution to the g-shift Δg(=gge) from the crystal-field mechanism, but also the contribution from the charge-transfer mechanism (which is neglected in the crystal-field theory) are considered. The calculated result shows good agreement with the observed value. It is found that the calculated Δg due to the charge-transfer mechanism is opposite in sign and about 38% in magnitude, compared with that due to the crystal-field mechanism. So, in the studies of the g factor for a 3dn ion having high valence state in crystals, the contribution due to the charge-transfer mechanism should be taken into account.  相似文献   

17.
In the isostructural cyanobridged chain compounds N(CH3)4MnIIMIII(CN)6 · 8H2O high spin Mn(II) ions couple antiferromagnetically to low spin Mn(III) of Fe(III) ions. The MnII–MnIII compound orders ferrimagnetically below TN = 28.5 ± 1 K. The tetragonal a and b axes are easy ones for the magnetic moments. In the MnII–FeIII compound antiferromagnetic order occurs below TN = 9.3 K, with spins aligned along the tetragonal c axis. The compound undergoes a meta-magnetic transition from the antiferromagnetic to a ferrimagnetic phase. This occurs at 2 K for a field Hcrit ≈ 1.2 T. The temperature dependence of Hcrit, which vanishes at TN, is followed. The tricritical temperature T1 is ~ 5 K.  相似文献   

18.
The energy levels of a Ru2O9 cluster have been calculated, including a higher order spin interaction. The Ru5+-Ru5+ coupling is described by the Hamiltonian ?= -2JS1· S2 ?j(S1·S2)2. The temperature dependence of the magnetic susceptibility is used to determine the values of the bilinear J and biquadratic j exchange integrals: J/k = -161K and j/k = 6.6K. The second term in the Hamiltonian corresponds to a fourth order perturbation involving low spin states.  相似文献   

19.
Electron states on an attractive center of small-radius r c ? l (l = $\sqrt {\frac{{c\hbar }}{{eH}}} $ is the magnetic length) located in a two-dimensional structure are investigated in a uniform magnetic field H applied perpendicularly to the structure surface. The spectrum of magnetic-impurity (MI) particle states with an arbitrary moment projection on the direction H for Landau bands 0 ≤ N < l 2/r c 2 is derived in the approximation that mixing of Landau levels is weak. The dependence of the electron energy states on magnetic field, the layer thickness, and the impurity position are studied. It is shown that dimension lowering leads to a qualitatively different spectrum of MI states compared to the three-dimensional case [1]. A comparison of the obtained binding energy of the D ? center with experimental data is performed.  相似文献   

20.
The magnetic properties and the magnetocaloric effects of RCuAl (R=Ho and Er) compounds have been investigated. Both HoCuAl and ErCuAl just undergo a second-order ferromagnetic–paramagnetic phase transition at TC. Large reversible magnetic entropy changes (ΔSM) are observed around their respective Curie temperatures due to the ferromagnetic–paramagnetic phase transition. For a field change of 0–5 T, the peak values of −ΔSM of RCuAl (R=Ho and Er) compounds are 23.9 and 22.9 J kg−1 K−1 at TC, with the values of refrigerant capacity of 393 and 321 J kg−1, respectively. These properties suggest that RCuAl (R=Ho and Er) compounds could be considered as attractive magnetic refrigerants working in low temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号