首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Most human response to vibration standards imply that low vibration levels are acceptable for longer periods than higher levels. In such standards it is usually assumed that the relationship between exposure duration and vibration level is of a similar form for a wide range of different types of motion. The experiment described in this paper was conducted to determine whether the relative discomfort produced by 4 Hz and 16 Hz sinusoidal whole-body vertical (az) vibration was dependent on the duration of the vibration exposure.Each of eight seated subjects was exposed to two 36-minute vibration sessions. Both sessions consisted of ten-second periods of 4 Hz and 16 Hz vibration alternating continuously. In one session the 4 Hz motion was set at the “standard” level of 0·75 m/s2 r.m.s. while the level of the 46 Hz “test” motion could be adjusted by the subjects. In the other session the 16 Hz motion was the standard at 0·75 m/sl r.m.s. and the level of the 4 Hz motion could be adjusted. The subjects were required to control the intensity of the test motion to compensate for periodic changes in its intensity made by the experimenter and so to maintain it at a level which produced similar discomfort to that caused by the standard motion.It was found that the relationship between the average levels of the two motions when adjusted to produce similar discomfort was independent of the vibration duration. The findings are discussed in relation to other laboratory research and the need for a better understanding of the effects of the duration of a vibration on its acceptability.  相似文献   

2.
Driving point mechanical impedance measurements were used to determine the dynamic response of the human head to sinusoidal vibration in the frequency range between 30 Hz and 5000 Hz at excitation levels of 0·98 m/s2 and 3·4 m/s2. Because of the low excitation levels, the weight of the head was sufficient to couple the head to the vibration source.At 20 Hz the impedance magnitude was about 790 N-s/m but increased at approximately 6dB/octave to a peak near 3500 N-s/m at 70–90 Hz. Between 100 Hz and 2000 Hz impedance decreased by about two orders of magnitude while the apparent mass decreased by three orders of magnitude indicating good vibration isolation at higher frequencies. The impedance response contains the information for modelling the head as a dynamic system.The response of the head to vibration can be simulated by a two degree-of-freedom, mass-excited system consisting of a series connection of a small driving mass, a damper, a spring and damper in parallel and a large final mass. Parameter values, derived by computer techniques, suggest that the large mass represents the total head, the small mass the tissue in contact with the vibration input and the spring the skull stiffness.  相似文献   

3.
In subjects exposed to whole-body vibration, the cause of non-linear dynamic characteristics with changes in vibration magnitude is not understood. The effect of muscle tension on the non-linearity in apparent mass has been investigated in this study. Eight seated male subjects were exposed to random and sinusoidal vertical vibration at five magnitudes (0·35-1·4 m/s2 r.m.s.). The random vibration was presented for 60 s over the frequency range 2·0-20 Hz; the sinusoidal vibration was presented for 10 s at five frequencies (3·15, 4·0, 5·0, 6·3 and 8·0 Hz). Three sitting conditions were adopted such that, in two conditions, muscle tension in the buttocks and the abdomen was controlled. It was assumed that, in these two conditions, involuntary changes in muscle tension would be minimized. The force and acceleration at the seat surface were used to obtain apparent masses of subjects. With both sinusoidal and random vibration, there was statistical support for the hypothesis that non-linear characteristics were less clear when muscle tension in the buttocks and the abdomen was controlled. With increases in the magnitude of random vibration from 0·35 to 1·4 m/s2 r.m.s., the apparent mass resonance frequency decreased from 5·25 to 4·25 Hz with normal muscle tension, from 5·0 to 4·38 Hz with the buttocks muscles tensed, and from 5·13 to 4·5 Hz with the abdominal muscles tensed. Involuntary changes in muscle tension during whole-body vibration may be partly responsible for non-linear biodynamic responses.  相似文献   

4.
Three experiments were conducted, with broad band noise and whole-body vibration used as stressors both separately and in combination. The three experiments related to three levels of vibration (0·6, 0·8 and 1·2 m/s2 r.m.s.). In each experiment the intensity of vibration was set at the specified value and the noise intensity for each subject was set at a value subjectively judged to be of equal intensity to the vibration offered. Subjects in each experiment performed an arithmetic task that was designed to minimize any direct mechanical interference from the stressors. The results are unusual in that significant reductions in performance were observed at quite low intensities of both noise and vibration. For the single stressor situations performance was reduced significantly compared with the control condition at the highest stressor level. At lower stressor levels, the effects were more varied and included some improvements in performance. However, there was a constancy in performance in the combined-stressor conditions such that performance did not vary significantly from that found in the control conditions.  相似文献   

5.
6.
The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.  相似文献   

7.
A laboratory investigation was directed at the development of criteria for the prediction of ride quality in a noise-vibration environment. The stimuli for the study consisted of octave bands of noise centered at 500 and 2000 Hz and vertical floor vibrations composed of either 5 Hz sinusoidal vibration, or random vibrations centered at 5 Hz and with a 5 Hz bandwidth. The noise stimuli were presented at A-weighted sound pressure levels ranging from ambient to 95 dB and the vibration and acceleration levels ranging from 0.02--0.13 grms. Results indicated that the total subjective discomfort response could be divided into two subjective components. One component consisted of subjective discomfort to vibration and was found to be a linear function of vibration acceleration level. The other component consisted of discomfort due to noise which varied logarithmically with noise level (power relationship). However, the magnitude of the noise discomfort component was dependent upon the level of vibration present in the combined environment. Based on the experimental results, a model of subjective discomfort that accounted for the interdependence of noise and vibration was developed. The model was then used to develop a set of criteria (constant discomfort) curves that illustrate the basic design tradeoffs available between noise and vibration.  相似文献   

8.
This paper describes the acceleration measurements and data analysis aspect of a comprehensive multidisciplined field study of several hundred chipper and grinder workers using pneumatic hand-held tools. Engineering testing of a sampling of these tools indicated that for a frequency range of 6·3 Hz to 1000 Hz, overall acceleration levels between 2000 m/s2 and 24 000 m/s2 were measured on the chisels and levels between 37 m/s2 and 350 m/s2 were measured on the handles of chipping hammers. Hand grinder acceleration levels ranged from 6 m/s2 to 21 m/s2.  相似文献   

9.
10.
The effect of variations in posture and vibration magnitude on apparent mass and seat-to-pelvis pitch transmissibility have been studied with vertical random vibration over the frequency range 1·0-20 Hz. Each of 12 subjects was exposed to 27 combinations of three vibration magnitudes (0·2, 1·0 and 2·0m/s2 r.m.s.) and nine sitting postures (“upright”, “anterior lean”, “posterior lean”, “kyphotic”, “back-on”, “pelvis support”, “inverted SIT-BAR” (increased pressure beneath ischial tuberosities), “bead cushion” (decreased pressure beneath ischial tuberosities) and “belt” (wearing an elasticated belt)).Peaks in the apparent masses were observed at about 5 and 10 Hz, and in the seat-to-pelvis pitch transmissibilities at about 12 Hz. In all postures, the resonance frequencies in the apparent mass and transmissibility decreased with increased vibration magnitude, indicating a non-linear softening system. There were only small changes in apparent mass or transmissibility with posture, although peaks were lower for the apparent mass in the “kyphotic” posture and were lower for the transmissibility in the “belt” posture. The changes in apparent mass and transmissibility caused by changes in vibration magnitude were greater than the changes caused by variation in posture.  相似文献   

11.
This paper describes a series of experiments to determine the effects of vibration frequency, viewing distance and multiple frequency motions on the reading of numeric characters. Contours of vertical (z-axis) whole-body vibration levels resulting in equal degradation of the reading task were determined over the frequency range 2·8 Hz to 63 Hz. With the seating condition employed, the task was found to be most sensitive to vibration acceleration at a frequency of 11·2 Hz. A marked correlation was observed between reading error and reading speed. The effects of vibration on reading performance were found to be dependent on viewing distance for distance of less than 1·5 m, with the effect increasing as the viewing distance was decreased. The effect of 3·15 Hz vibration was found to increase more rapidly with reductions in viewing distance than that of 16 Hz vibration. The effects of 3·15 and 16 Hz vibration were independent of viewing distance greater than 1·5 m, indicating that the effects of rotational eye motion are dominant at these distances. Four methods were compared for predicting the effects of multiple frequency motion on reading performance given a knowledge of the effect of each component alone. The best predictions of reading error were obtained from the most severe weighted spectral component alone. Inspection of individual subject's data suggests that in many cases the effect of multiple frequency vibration on reading is even less than the effect of the largest sinusoidal component alone.  相似文献   

12.
This paper reports on an experiment designed to provide information fundamental to the prediction of the discomfort of multi-axis vibration. Seated subjects were exposed to various level and phase combinations of 3·15 Hz vertical (az) and 3·15 Hz lateral (ay) sinusoidal vibration. One part of the experiment determined the levels of two single-axis vibrations (azanday separately) which produced similar discomfort to a selection of dual-axis vibrations. In another part of the experiment subjects adjusted the level of a 3·15 Hz motion in one of the two axes to produced similar discomfort to each of seven levels of the same frequency in the other axis.It was concluded that for dual-axis motions of the type investigated the discomfort is not greatly influenced by the phase between the two single-axis components producing the motion. Thus, the discomfort caused by the circular motion given by the combinations of the two sinusoidal components differing in phase by 90 degrees is similar to that caused by the translational motion produced by the same components combined with zero phase shift. The results confirm that a meaningful estimate of the relative discomfort produced by dual-axis stimuli can be determined from the levels of a single-axis reference motion appropriately adjusted by subjects. The level of a single-axis motion giving similar discomfort to each of the dual-axis conditions in the experiment was well approximated by the root-mean-square of the two levels of this single-axis motion equivalent to the two separate components of each dual-axis motion.  相似文献   

13.
The biodynamic apparent mass response characteristics of 24 human subjects (12 males and 12 females) seated under representative automotive postures with hands-in-lap (passengers) and hands-on-steering wheel (drivers) are reported. The measurements were carried out under white noise vertical excitations of 0·25, 0·5 and 1·0m/s2r.m.s. acceleration magnitudes in the 0·5-40Hz frequency range and a track measured input (1·07m/s2). The measured data have been analyzed to study the effects of hands position, body mass, magnitude and type of vibration excitation, and feet position, on the biodynamic response expressed in terms of apparent mass. A comparison of the measured response of subjects assuming typical automotive postures involving inclined cushion, inclined backrest and full use of backrest support with data determined under different postural conditions and excitation levels revealed considerable differences. The biodynamic response of automobile occupants seated with hands in lap, peaks in the 6·5-8·6Hz frequency range, which is considerably higher than the reported range of fundamental frequencies (4·5-5Hz) in most other studies involving different experimental conditions. The peak magnitude tends to decrease considerably for the driving posture with hands-on-steering wheel, while a second peak in the 8-12 Hz range becomes more apparent for this posture. The results suggest that biodynamic response of occupants seated in automotive seats and subject to vertical vibration need to be characterized, as a minimum, by two distinct functions for passenger and driving postures. A higher body mass, in general, yields higher peak magnitude response and lower corresponding frequency for both postures. The strong dependence of the response on the body mass is further demonstrated by grouping the measured data into four different mass ranges: less than 60 kg, between 60·5 and 70 kg, between 70·5 and 80 kg, and above 80 kg. From the results, it is concluded that hands position and body mass have the most significant influence on the apparent mass response under automotive posture and vibration.  相似文献   

14.
The aim of this study was to investigate the effects of exposure to whole-body vibration (WBV) and the ISO 2631/1-1997 frequency weighting on gastric motility. The gastric motility was measured by electrogastrography (EGG) in nine healthy volunteers. Sinusoidal vertical vibration at a frequency of 4, 6·3, 8, 12, 16, 31·5, or 63 Hz was given to the subjects for 10 min. The magnitude of exposure at 4 Hz was 1·0m/s2 (r.m.s.). The magnitudes of the other frequencies gave the same frequency-weighted acceleration according to ISO 2631/1-1997. The pattern of the dominant frequency histogram (DFH) was changed to a broad distribution pattern by vibration exposure. Vibration exposure had the effect of significantly reducing the percentage of time for which the dominant component had a normal rhythm and increasing the percentage of time for which there was tachygastria (p<0·05). Vibration exposure generally reduced the mean percentage of time with the dominant frequency in normal rhythm component. There was a significant difference between the condition of no vibration and exposure to 4 and 6·3 Hz of vibration frequency (p<0·05). The frequency weighting curve given in ISO 2631/1-1997 was not adequate for use in evaluating the physiological effects of WBV exposure on gastric motility.  相似文献   

15.
The influence of whole-body vibrations, noise, and a combination of the two, caused by heavy road traffic (150 events/night) on sleep, subjectively experienced sleep quality, and performance was investigated under controlled laboratory conditions for male and female subjects 20-35 years of age. A room was built above a vibrator table, with the legs of the bed mounted directly on the table through holes in the floor. Vertical vibrations were found to be attenuated by the mattress with 20-40 dB for frequencies greater than 10 Hz, whereas horizontal vibrations were slightly amplified. It could be concluded that when traffic noise [50-dB (A) peak level] is accompanied by vibrations with peak levels of 0.24 m/s2 vertically and 0.17 m/s2 horizontally as measured on the frame of the bed (stimulus duration approximately 2 s, dominant frequency approximately 12 Hz), sleep is more disturbed than is the case when noise alone occurs. The amount of REM sleep, which was significantly reduced for the vibration level mentioned above, was even more disturbed when a higher exposure level, 0.34 m/s2 vertically and 0.24 m/s2 horizontally, was applied. The subjectively rated sleep quality was lower for the higher than for the lower vibration level. Performance in the morning was only influenced for the higher vibration level. It could be concluded that vibration exposure levels near the recommendation made in ISO-standard 2631 for the awake state disturb sleep in man.  相似文献   

16.
Abstract

Magnetic circular dichroism in the 4431 Å absorption line of the oxygen compensated CaF2:Dy3+ crystal has been used to measure transient phenomena in the Kramers doublet ground level 6H15/2 of the Dy3+ ion during magnetic field reversal. After inverting the field with a rate 10 T·s?1 <dB/dt < 400 T·s?1 a considerable spin inversion with the final electron spin polarization PF was achieved while PF=-0.86±0.03 relaxed to less than 0.05 when dB/dT < 10?2 T·s?1.  相似文献   

17.
This paper presents a method for calculating power transmitted to the hands of operators who use vibrating hand tools. Results that relate to a comprehensive multidisciplined NIOSH field study of several hundred chipper and grinder workers who used pneumatic hand tools are presented. The results of this study indicated that the power in the frequency range of 6·3 Hz to 1000 Hz transmitted to the hand ranged from 1·08 × 103 to 7·23 × 103 J/s for the chisel and from 8·52 × 10?1 to 1·57 × 102 J/s for the handle of chipping hammers. For pneumatic grinders the power transmitted to the hands of the tool operators was in the range of 6·58 × 10?3 to 2·35 × 10?3 J/s over the same frequency range.  相似文献   

18.
The driving-point dynamic responses of standing people (e.g. their mechanical impedance or apparent mass) influence their dynamic interactions with structures on which they are supported. The apparent mass of the standing body has been reported previously for vertical excitation but not for lateral or fore-and-aft excitation. Twelve standing male subjects were exposed to fore-and-aft and lateral random vibration over the frequency range 0.1-5.0 Hz for 180 s at four vibration magnitudes: 0.016, 0.0315, 0.063, and 0.125 m s−2 rms. With lateral excitation at 0.063 m s−2 rms, subjects also stood with three separations of the feet. The dynamic forces measured at the driving-point in each of the three translational axes (i.e. fore-and-aft, lateral and vertical) showed components not linearly related to the input vibration, and not seen in previous studies with standing subjects exposed to vertical vibration or seated subjects exposed to vertical or horizontal vibration. A principal peak in the lateral apparent mass around 0.5 Hz tended to decrease in both frequency and magnitude with increasing magnitude of vibration and increase with increasing separation of the feet. The fore-and-aft apparent mass appeared to peak at a frequency lower than the lowest frequency used in the study.  相似文献   

19.
Subjective and dynamic responses of seated subjects exposed to simultaneous vertical and fore-and-aft sinusoidal whole-body vibration were investigated. The effect of the phase difference between the vertical and the fore-and-aft vibration on the responses was of a particular interest in this study. Fifteen subjects were exposed to dual-axis vibrations at six frequencies (2.5-8 Hz) and at eight phases between the two single-axis components (0-315°). The magnitude of vibration in each axis was constant at 0.7 m s−2 rms. Discomfort caused by vibration was measured by the method of magnitude estimation. The motion of the body were measured at the head and three locations along the spine with accelerometers attached to the body surface. The most significant effect of the phase between the two single-axis components on the discomfort was observed at 5 Hz: about 40% difference in the median discomfort estimate caused by changing the phase. The transmissibilities from vertical seat vibration to vertical motions of the spine varied from 0.5 to 2.0 by changing the phase between the two single-axis components at frequencies from 2.5 to 5 Hz. The effect of the phase observed in the dynamic response was not predicted by the superposition of the responses to each single-axis vibration. The discomfort caused by the dual-axis vibration tended to be correlated better with the combinations of the dynamic responses measured in the two axes than with the dynamic responses in a single axis.  相似文献   

20.
Vibrotactile intensity discrimination measured by three methods   总被引:1,自引:0,他引:1  
The difference threshold for the detection of changes in vibration amplitude was measured as a function of the intensity and frequency of stimuli delivered through a 2.9-cm2 contactor to the thenar eminence. Stimuli were either 25- or 250-Hz sinusoids, narrow-band noise centered at 250 Hz, or wideband noise. Thresholds were measured by two-interval, forced-choice tracking under three methods of stimulus presentation. In the gated-pedestal method, subjects had to judge which of two 700-ms bursts of vibration separated by 100 ms was more intense. In the continuous-pedestal method, subjects had to detect a 700-ms increment in the amplitude of an ongoing pedestal of vibration. In the two-burst-continuous-pedestal method with 1500-ms pedestals, the subject had to detect which of two successively presented pedestals contained a 500-ms amplitude increment. Thresholds were consistently lower for detecting increments in the amplitude of a continuous pedestal of vibration than for detecting amplitude differences between briefly presented successive pedestals or amplitude increments in successive pedestals. A "near miss" to Weber's law was found both for sinusoidal and for noise stimuli. The difference threshold was not affected by stimulus frequency condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号