首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The novel nano-scale iron phthalocyanine oligomer/Fe3O4 (FePc/Fe3O4) hybrid microspheres were synthesized from iron phthalocyanine oligomer and FeCl3·6H2O via a solvent-thermal crystallization route. The morphology and structure of the hybrid microspheres were characterized by Fourier transform infrared spectrophotometer, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. These results showed that the hybrids were monodisperse microspheres and the morphology can be adjusted by controlling pre-polymerization time. The saturation magnetization increased with increase in the pre-polymerization time, while the coercivities decreased. The FePc/Fe3O4 hybrid microspheres exhibited novel microwave electromagnetic properties: the dielectric loss was enhanced when the pre-polymerization time increased and a new microwave loss peak appeared at high frequency. The microwave absorbing properties enhanced with increase in the pre-polymerization time and a maximum reflection loss of −29.7 dB was obtained at 11.7 GHz with 6 h of pre-polymerization time when the matching thickness was 3.0 mm. The novel hybrid materials are believed to have potential applications as microwave absorbing materials.  相似文献   

2.
The novel nano-scale Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres were synthesized from bis-phthalonitrile and FeCl3·6H2O through a simple solvent-thermal route. The morphology and structure of the hybrid microspheres were characterized by FTIR, XRD, SEM and TEM. These results showed that the hybrids were monodispersed solid microspheres and the morphology can be adjusted by controlling the addition of bis-phthalonitrile. On the basis of these results, the formation process was discussed. Magnetization measurement indicated that saturation magnetizations decreased linearly with increasing the addition of bis-phthalonitrile, while coercivities increased. The microwave absorption properties were measured by a vector network analyzer. The dielectric loss of the hybrid microspheres was larger and a new magnetic loss peak appeared at high frequency. The microwave absorbing properties enhanced with increasing the addition of bis-phthalonitrile and a maximum reflection loss of −31.1 dB was obtained at 8.6 GHz with 1 g bis-phthalonitrile when the matching thickness was 3.0 mm. The novel hybrid materials are believed to have potential applications in the microwave absorbing performances.  相似文献   

3.
Fe3O4 nanoparticle/organic hybrids were synthesized via hydrolysis using iron (III) acetylacetonate at ∼80 °C. The synthesis of Fe3O4 was confirmed by X-ray diffraction, selected-area diffraction, and X-ray photoelectron spectroscopy. Fe3O4 nanoparticles in the organic matrix had diameters ranging from 7 to 13 nm depending on the conditions of hydrolysis. The saturation magnetization of the hybrid increased with an increase in the particle size. When the hybrid contained Fe3O4 particles with a size of less than 10 nm, it exhibited superparamagnetic behavior. The blocking temperature of the hybrid containing Fe3O4 particles with a size of 7.3 nm was 200 K, and it increased to 310 K as the particle size increased to 9.1 nm. A hybrid containing Fe3O4 particles of size greater than 10 nm was ferrimagnetic, and underwent Verwey transition at 130 K. Under a magnetic field, a suspension of the hybrid in silicone oil revealed the magnetorheological effect. The yield stress of the fluid was dependent on the saturation magnetization of Fe3O4 nanoparticles in the hybrid, the strength of the magnetic field, and the amount of the hybrid.  相似文献   

4.
Novel organometal/Fe3O4 hybrid microspheres were prepared from bisphthalonitrile-benzoxine resin containing ferrocene (FPNBZ) and FeCl3·6H2O via a one-step solvent-thermal method. The phase structure, composition and morphology of as-prepared hybrid microspheres were characterized by X-ray powder diffraction, Fourier transform infrared spectrophotometer and scanning electron microscopy. The results revealed that crystallinity, dispersity and size of hybrid microspheres can be controlled by altering the reaction parameters. Density measurement showed that the density is decreased with increasing FPNBZ concentration in the hybrid materials. Electromagnetic properties of the FPNBZ/Fe3O4 hybrid microspheres were measured at 2-18 GHz. The electromagnetic measurement indicated that the resonance peaks of complex permittivity, complex permeability, dielectric loss and magnetic loss were shifted to the high frequencies, with the increasing amount of FPNBZ. The as-prepared hybrid materials are believed to have broad applications both in microwave absorption materials in a wide frequency range and in biomedical fields.  相似文献   

5.
The superparamagnetic 8-nm Fe3O4 nanoparticles were successfully prepared by chemical oxidation process. For the complex permittivity, the dual dielectric relaxation processes have been proved by two overlapped Cole–Cole semicircles, and the natural resonance frequency is 3.03 GHz for the complex permeability. The maximum reflection loss value reaches −55.5 dB at 6.11 GHz with 3.85 mm in the thickness of the absorbers for the superparamagnetic 8-nm Fe3O4 nanoparticles which is better than that of 150 nm and 30 nm Fe3O4 nanoparticles. It is believed that the superparamagnetic 8-nm Fe3O4 nanoparticles can be used as a kind of candidate for microwave absorber.  相似文献   

6.
A novel kind of hybrid nanospheres made of Fe3O4 and ferrocenyl-CuPc (FCP) was prepared via effective solvothermal method and performed microwave absorptivity only in Ku-band with minimum reflection loss of −25 dB at 16.0 GHz corresponding to absorbing about 99.7% content of microwave. Scanning electron microscopy images indicated that the nanospheres with uniform particle size distribution have the average diameter of 135 nm. Due to the synergistic reaction between magnetic ferrocenyl-CuPc and Fe3O4, the hybrid nanospheres showed novel electromagnetic properties. The real part of complex permittivity of hybrid nanospheres remains stable in the range of 0.5–12.0 GHz and has a large fluctuation at 16.5 GHz. Moreover, the dielectric loss of hybrid nanospheres also appeared a sharp peak at 16.3 GHz with the value of 2.7. The specific gravity of hybrid nanospheres is about 2.08. On the basis of these results, the novel hybrids are believed to have potential applications in the microwave absorbing area in Ku-band.  相似文献   

7.
Al2O3/FeCrAl composite coatings were fabricated by atmosphere plasma spraying technique. Microstructure and dielectric properties in the frequency range from 8.2 to 12.4 GHz were investigated. The microstructure of composite coatings shows a uniform dispersion of metal particles with litter pores and microcracks in the composite coatings. The relaxation polarization and interfacial polarization in the coatings would contribute to enhance ?′ with rising FeCrAl content, and the associated loss could be considered as a dominating factor enhancing ?″. By calculating the microwave-absorption as a single-layer absorber, for the composite coatings with 41 wt.% FeCrAl content, the reflection loss values exceeding −10 dB are achieved in the frequency range of 9.1-10.6 GHz when the coating thickness is 1.3 mm.  相似文献   

8.
After hollow microspheres (HM) were surface modified, a layer of electromagnetic polyaniline/Fe3O4 composite (PAN/Fe3O4) was successfully grafted onto the surface of the self-assembled monolayer coated HM, resulting in HM/PAN/Fe3O4 composites. In this approach, γ-aminopropyltriethoxy silane was adopted to form a well-coating monolayer with amino groups for the graft polymerization of aniline, which played an important role in fabricating the core-shell structure. FeCl3 was used as the oxidant not only for aniline to form PAN, but also for FeCl2 to prepare the magnets. The structure, morphologies, and magnetic properties of the as-prepared samples were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The results indicated that the HM/PAN/Fe3O4 composites possess low density (ρ < 1.0 g/cm3), controllable morphology, and good magnetic properties at room temperature (saturation magnetization Ms = 8.32 emu g−1 and coercive force Hc ≈ 0).  相似文献   

9.
Magnetic Fe3O4 materials with mesoporous structure are synthesized by co-precipitation method using yeast cells as a template. The X-ray diffraction (XRD) pattern indicates that the as-synthesized mesoporous hybrid Fe3O4 is well crystallized. The Barrett-Joyner-Halenda (BJH) models reveal the existence of mesostructure in the dried sample which has a specific surface area of 96.31 m2/g and a pore size distribution of 8-14 nm. Transmission electron microscopy (TEM) measurements confirm the wormhole-like structure of the resulting samples. The composition and chemical bonds of the Fe3O4/cells composites are studied by Fourier transform infrared (FT-IR) spectroscopy. Preliminary magnetic properties of the mesoporous hybrid Fe3O4 are characterized by a vibrating sample magnetometer (VSM). The magnetic Fe3O4/cells composites with mesoporous structure have potential applications in biomedical areas, such as drug delivery.  相似文献   

10.
X-ray photoelectron spectroscopic (XPS) studies were carried out on wet-chemically synthesized cubic BaTiO3, Ba0.9Nd0.1TiO3 and BaTi0.9Fe0.1O3−δ powders. The compounds were prepared by hydrothermal and gel to crystallite conversion technique; and phases formed readily at 420 K. The phase purity of the powders was confirmed from X-ray diffractometry. Chemical state and chemical environment of the constituent elements in the compositions were examined by XPS. Ba2+ was found to exist in two different chemical environments in these titanates. The Ti 2p3/2 photoelectron peak in BaTi0.9Fe0.1O3−δ was found to be broadened after Fe3+ substitution. Any resolvable broadening was not observed distinctly in the Ti 2p peak for Ba0.9Nd0.1TiO3, unsintered BaTiO3 and BaTiO3 annealed in hydrogen (8% H2 + Ar) at 1000 K. The prevalence of mixed-valent titanium and iron in BaTi0.9Fe0.1O3−δ composition was evident from the XPS results and was further supported by the enhanced electrical conductivity at 298-550 K for BaTi0.9Fe0.1O3−δ in comparison to BaTiO3 and Ba0.9Nd0.1TiO3. Hydroxyl incorporation was facilitated by substituting Nd3+ in Ba-sublattice. The presence of hydroxyls was observed from the broadening of the O 1s peak in XPS studies of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号