首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Superconducting magnet system for a 28GHz ECR ion source has been designed.The maximum axial magnetic fields are 4T at the rf injection side and 2T at the beam extraction side,respectively.The hexapole magnetic field is about 2T on the inner surface of the plasma chamber.The superconducting coils consist of six solenoids and six racetrack windings for a hexapole field.Two kinds of coil arrangements were investigated:one is an arrangement in which the hexpole coil is located in the bore of the solenoids,and another is the reverse of it.The coils use NbTi-Copper conductor and are bath-cooled in liquid helium.The six solenoids are excited with individual power supplies to search for the optimal axial field distribution.The current leads use high Tc material and the cryogenic system is operated in LHe re-condensation mode using small refrigerators.The thermal insulated supports of the cold mass have also been designed based on the calculated results of the magnetic force.The heat loads to 70K and LHe stages were estimated from the design of the supports,the current leads and so on.  相似文献   

2.
In this paper a commercial CFD (computational fluid dynamics) code FLUENT has been used and modified for the axisymmetric swirl and time-dependent simulation of an atmospheric pressure argon arc in an external axial magnetic field (AMF). The computational domain includes the arc itself and the anodic region. Numerical results demonstrate that the AMF substantially increases the tangential component of the plasma velocity. The resulting centrifugal force for the plasma rotation impels it to travel to the arc mantel and as a result, a low-pressure region appears at the arc core. With the AMF, the arc presents a hollow bell shape and correspondingly, the maximal values of the temperature, pressure and current density on the anode surface are departing from the arc centreline.  相似文献   

3.
In this paper, we focus on a PIG source for producing intense H-ions inside a 9 MeV cyclotron. The properties of the PIG ion source were simulated for a variety of electric field distributions and magnetic field strengths using a CST particle studio. After analyzing the secondary electron emission (SEE) as a function of both magnetic and electric field strengths, we found that for the modeled PIG geometry, a magnetic field strength of 0.2 T provided the best results in terms of the number of secondary electrons. Furthermore, at 0.2 T, the number of secondary electrons proved to be greatest regardless of the cathode potential. Also, the modified PIG ion source with quartz insulation tubes was tested in a KIRAMS-13 cyclotron by varying the gas flow rate and arc current, respectively. The capacity of the designed ion source was also demonstrated by producing plasma inside the constructed 9 MeV cyclotron. As a result, the ion source is verified as being capable of producing an intense H- beam and high ion beam current for the desired 9 MeV cyclotron. The simulation results provide experimental constraints for optimizing the strength of the plasma and final ion beam current at a target inside a cyclotron.  相似文献   

4.
超导ECR离子源DECRIS-SC2   总被引:1,自引:0,他引:1  
A new compact version of the"liquid He-free"superconducting Electron Cyclotron Resonance Ion Source,to be used as an injector for the U-400M cyclotron,is presently under construction at the FLNR in collaboration with LHE(JINR).The axial magnetic field of the source is created by the superconducting magnet,and the NdFeB hexapole is used for the radial plasma confinement.The microwave frequency of 14GHz will be used for ECR plasma heating.The DECRIS-SC2 superconducting magnet is designed for the induction of a magnetic field on the axis of the source of up to 1.4T(extraction side)and 1.9T(injection side) at nominal current of 75A.Cooling of the coils is carried out by CM cryocooler with cooling power of 1W at the temperature 4.5K.The basic design features of the superconducting magnet and of the ion source are presented.The main parts of the source are in production.The first beam test of the source is expected in the beginning of 2007.  相似文献   

5.
Arc efficiency is a critical criterion for assessing the performance of the ion source. High are efficiency is necessary for a high power ion source, because it can decrease the load of the arc power supply. Thus the relationship between the discharge parameters (gas pressure, arc voltage, filament current, bias resistance connecting between the anode and plasma grid) and the arc efficiency is investigated in experiment especially. It is found that with increasing pressure, the arc efficiency increases fast if the pressure is below 0.4 Pa, but when it is above 0.4 Pa, the arc efficiency remains unchanged or increases slowly. If we increase the arc voltage or filament current, the arc efficiency decreases. The bias resistance also influences the arc efficiency, at the same pressure the arc efficiency increases with resistance.  相似文献   

6.
The dependence of critical current density Jc on the angle α between the directions of the applied magnetic field H (which was rotated in the c-axis-I plane) and the in-plane current I was measured on a c-axis oriented epitaxial YBa2Cu3O7-δ films at 81 K, with the magnetic field strength up to 6T. Analysis of the experimental results on the basis of the classical scaling law of pinning force shows that there exist simultaneously planar-pinning and volume-pinning mechanisms, and the contribution of volume pinning increases wish decreasing while that of the planar pinning decreases, We propose that the decrease of Lorentz-force-independent critical current density with increasing H for H∥I results from the suppression of superconductivity by the magnetic field, The fact that the contribution of volume pinning increases with decreasing α also arises from the suppression of superconductivity in CuO2 plane by the magnetic field.  相似文献   

7.
A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field. The plasma is about40cm in length, 4cm in width and 1 cm in thickness. The electron density is about 10^8cm^-3. The hollow cathodeis made to be shallow with a large opening, which is different from the ordinary deep hollow cathode. A Langmuirprobe is used to detect the plasma. The electron density and the spatial distribution of the plasma change whenvoltage, pressure and the magnetic field vary. A peak and a data fluctuation at about 200 G-300 G are observedin the variation of electron density (or thickness of the sheet plasma) with the magnetic field. Our work will behelpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.  相似文献   

8.
The HL-2A is the first divertor tokamak in China. Its construction is based on the main components of ASDEX from IPP and an entirely new power supply system is required to power its magnetic field coils and the plasma heating system. The most important electric parameters of HL-2A are toroidal field of 2. 8kA with a flat topT, plasma current of 450 of 5 s.  相似文献   

9.
The nonlinear thermo–magneto–mechanical magnetostrictive constitutive and the linear thermo–mechanical-electric piezoelectric constitutive are adopted in this paper. The bias magnetic field and ambient temperature are equivalent to a magnetic source and a thermo source, respectively. An equivalent circuit, which contains a magnetic source and a thermo source at the input, for the thermo–magneto–electric coupling effect in magnetoelectric(ME) laminates, is established. The theoretical models of the output voltage and static ME coefficient for ME laminates can be derived from this equivalent circuit model. The predicted static ME coefficient versus temperature curves are in excellent agreement with the experimental data available both qualitatively and quantitatively. It confirms the validity of the proposed model. Then the models are adopted to predict variations in the output voltages and ME coefficients in the laminates under different ambient temperatures, bias magnetic fields, and the volume ratios of magnetostrictive phases. This shows that the output voltage increases with both increasing temperature and increasing volume ratio of magnetostrictive phases; the ME coefficient decreases with increasing temperature; the ME coefficient shows an initial sharp increase and then decreases slowly with the increase in the bias magnetic field, and there is an optimum volume ratio of magnetostrictive phases that maximize the ME coefficient.This paper can not only provide a new idea for the study of the thermo–magneto–electric coupling characteristics of ME laminates, but also provide a theoretical basis for the design and application of ME laminates, operating under different sensors.  相似文献   

10.
Cylindrically symmetric inhomogeneous cosmological model for bulk viscous fluid distribution with electro- magnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. F12 is the non-vanishing component of electromagnetic field tensor. To get the deterministic solution, it has been assumed that the expansion 0 in the model is proportional to the shear σ. The values of cosmological constant for these models are found to be small and positive at late time, which are consistent with the results from recent supernovae Ia observations. Physical and geometric aspects of the models are also discussed in presence and absence of magnetic field.  相似文献   

11.
The relationship between the transported ion current and the cathodic arc current is determined in a vacuum arc plasma source equipped with a curved magnetic filter. Our results suggest that the outer and inner walls of the duct interact with the plasma independently. The duct magnetic field is a critical factor of the plasma output. The duct transport efficiency is to maximize at a value of bias plate voltage in the range +10 V to +20 V, and independent (within our limit of measurement) of the magnetic field strength in the duct. The plasma flux is composed of two components: a diffusion flux in the transverse direction due to particle collisions, and a drift flux due to the ion inertia. The inner wall of the magnetic duct sees only the diffusion flux while the outer wall receives both fluxes. Thus, applying a positive potential to the outer duct wall can reflect the ions and increase the output current. Our experimental data also show that biasing both sides of the duct is more effective than biasing the outer wall alone.  相似文献   

12.
A magnetic duct is inserted between the cathodic arc plasma source and the chamber to eliminate the macroparticles. In this paper, the plasma output of the magnetic duct is determined as a function of the magnetic field and the bias voltage under the Bilek biasing mode and entire duct biasing mode. The computer simulation and the experimental result indicate that the {\vec E}×{\vec B} drift results in an extra diffusion flux under the Bilek biasing mode. The test verifying the electron oscillation was conducted in the magnetic duct biased in the Bilek mode. The electron behaviour under Bilek biasing mode is different from that under entire duct biasing mode. The Bilek biasing mode has a lower plasma output than the entire duct biasing mode.  相似文献   

13.
Curved magnetic ducts are frequently used to remove macroscopic-sized droplets from the plasma stream of cathodic vacuum arcs. The plasma of a cathodic vacuum arc in a magnetic filter is characterized by a strongly directional ion velocity (corresponding to 20-100 eV) and magnetized electrons. In the first section of this paper the effects of these features on the I-V characteristic curves of planar probes are identified and explained using a simple model. This is then used to interpret the interaction of the plasma with the walls of a biased quarter torus duct. Two small electrodes placed on the outer and inner sections of the curved duct wall show that the I-V characteristic is determined primarily by the electron-ion current balance at the wall on the outside of the curve. The application of a bias to a planar electrode on the outer wall section was found to give the same increase in throughput as a positive bias applied to the entire duct with the advantage of a much smaller electron current being drawn by the biasing power supply. The improvement in duct throughput achievable with positive-biasing of the duct wall was found to depend on both the configuration and strength of the magnetic field in the quarter torus filter. The plasma density profile and potential were unaffected by the application of the bias  相似文献   

14.
The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode arc investigated. The arc voltage Va is measured with a fixed arc current for an anode diameter of 40 mm. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc when the anode hole diameter is 40 mm. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field  相似文献   

15.
The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode are investigated. The arc voltage Va is measured with a fixed arc current. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field.  相似文献   

16.
When double‐break vacuum circuit breakers (VCBs) interrupt the fault current, the series arc will generate their individual magnetic fields in different breaks. The magnetic field in one break will influence the arc in another break if the magnetic field is strong enough or the two breaks are very close. In this case, an interactive magnetic field effect happens. This field is also called the bias magnetic field (BMF). BMF can cause anode erosion and affect the performance at current zero. The distribution of BMF and the optimal configuration of the double‐break VCBs were obtained by the electromagnetic field simulation using the Ansoft Maxwell software. Based on the simulated magnetic field data, in the experiments, the interaction between the series vacuum arcs in double‐break VCBs was equivalent to the interaction between a single vacuum arc and the magnetic field generated by a Helmholtz coil. A high‐speed CMOS camera was used to record the trajectory of the vacuum arc plasma under different BMFs with different types of contacts. The results show the BMF can increase the arc voltage, and the arc becomes unstable. When the BMF becomes stronger, the arc voltage increases, and the arc becomes more unstable. In addition, for different types of contacts, the development process of the arc and the influence level are different under the same BMF. For a Wan‐type transverse magnetic field (TMF) contact or strong BMF, metal sputtering is evident and anode erosion becomes serious. For a cup‐type axial magnetic field (AMF) contact, the influence of BMF on the series arc plasma in double‐break VCBs is less than that of the Wan‐type TMF contact. The results of this work may be helpful for the design of compact double‐break VCBs.  相似文献   

17.
A model is proposed for the flow of a plasma originating from a cathodic vacuum arc into a curvilinear magnetic field. The model gives good agreement with measurements obtained from a filtered cathodic-arc thin film deposition system. The important parameters involved in the motion of a vacuum arc plasma beam through a magnetic filter are examined. The analysis is based on the use of the guiding center approximation to describe the motion of the charged particles produced in the plasma where the thermal energy is negligible compared to the mass flow energy. Electron-ion collision effects are included within the framework of the drift model. It is shown that under the limiting condition of a collision frequency which is much higher than the cyclotron frequency of the electron, the motion of the plasma ions around the bend becomes independent of the magnetic field, with the number of ions traversing the filter significantly reduced. However, in the collisionless plasma case (cyclotron frequency higher than the collision frequency), the model predicts a square-law relationship between ion-saturation current and magnetic field , Ip B2  相似文献   

18.
S N Sen  M Gantait 《Pramana》1988,30(2):143-151
The variation of voltage, current and output power in a mercury arc plasma has been investigated in an axial magnetic field (0–1350 G) for three values of discharge current namely 3, 4 and 5 A. The voltage increases and current decreases almost linearly and the output power also increases with increase of the magnetic field. The conductivity value in magnetic field has been calculated and an analytical expression presented to represent the variation of conductivity in the magnetic field. Utilizing this expression the variation of output power with magnetic field can be explained.  相似文献   

19.
李刘合  刘红涛  罗辑  许亿 《物理学报》2016,65(6):65202-065202
采用大尺寸矩形石墨靶作为真空阴极电弧源, 研制了带状真空电弧磁过滤器. 使用法拉第杯和朗缪尔探针对90 ℃弯曲磁过滤器中的带状等离子体出口所在平面的15个区域的离子能量和密度进行了测试; 用该带状真空电弧磁过滤器制备了类金刚石膜(diamond-like carbon, DLC); 对相应位置上的类金刚石膜进行了Raman分析和膜厚测量. 结果表明: 磁过滤器出口所在平面的15个划分区域中离子能量分布接近麦克斯韦分布, 离子能量分布与类金刚石膜的结构具有明显的对应特征, 离子密度分布与DLC膜膜厚分布相互之间具有相关性.  相似文献   

20.
The transport of vacuum arc plasmas through a 90° curved magnetic macroparticle filter was investigated using a high-current pulsed arc source with a carbon cathode. The peak arc current was in the kiloampere range, exceeding considerably the level of what has been reported in the literature. The main question investigated was whether magnetic macroparticle filters could be scaled up while maintaining the transport efficiency of small filters. In front of the cathode, we found that arc current dependent total ion saturation currents were in the range from 10% to 23% of the arc current. The best relative transmission was 25% (time integrated output/time integrated input) at a duct wall bias of 12.5 V and at an axial magnetic field of about 100 mT. The measured relative transmission of the used high-current arrangement is comparable to what has been observed with other low-current filters. The absolute measurable ion saturation currents at the filter exit reached 70 A at an arc current of about 1000 A  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号