首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In the present investigation, holographic interferometry was utilized for the first time to measure the double layer capacitance of aluminium samples during the initial stage of anodization processes in an aqueous solution without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out chemically in different sulphuric acid concentrations (0.5–3.125% H2S04) at room temperature. In the meantime, a method of holographic interferometry was used to measure the thickness of anodization (oxide film) of the aluminium samples in aqueous solutions. Along with the holographic measurement, a mathematical model was derived in order to correlate the double layer capacitance of the aluminium samples in solutions to the thickness of the oxide film of the aluminium samples which forms due to the chemical oxidation. The thickness of the oxide film of the aluminium samples was measured by real-time holographic interferometry. Consequently, holographic interferometry is found to be very useful for surface finish industries, especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film as well as the double layer capacitance of the aluminium samples can be determined in situ. In addition, a comparison was made between the obtained data of the double layer capacitance from the holographic measurements and the double layer capacitance data obtained from measurements of electrochemical impedance spectroscopy. The comparison indicates that there is good agreement between the data from both techniques.  相似文献   

2.
In the present investigation, holographic interferometry was utilized for the first time to measure the alternating current (a.c.) impedance of aluminium samples during the initial stage of anodization processes in aqueous solution without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out chemically in different sulphuric acid concentrations (0.5–3.125% H2SO4) at room temperature. In the mean time, a method of holographic interferometric was used to measure the thickness of anodization (oxide film) of the aluminium samples in aqueous solutions. Along with the holographic measurement, a mathematical model was derived in order to correlate the a.c. impedance of the aluminium samples in solutions to the thickness of the oxide film of the aluminium samples which forms due to the chemical oxidation. The thickness of the oxide film of the aluminium samples was measured by the real-time holographic interferometry. Consequently, holographic interferometry is found very useful for surface finish industries especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film as well as the a.c. impedance of the aluminium samples can be determined in situ. In addition, a comparison was made between the a.c. impedance values obtained from the holographic interferometry measurements and from measurements of electrochemical impedance spectroscopy. The comparison indicates that there is good agreement between the data from both techniques.  相似文献   

3.
In a previous study a mathematical model relating surface and bulk behaviors of metals in aqueous solution was developed. The model was established based on principles of holographic interferometry for measuring microsurface dissolution, i.e., mass loss, and on those of electrochemistry for measuring the bulk electronic current, i.e., corrosion current. In the present work, an interferometric sensor was built based on the above model, and the corrosion current density of coated copper and brass in seawater were obtained using this sensor. The interferometric sensor was also utilized for the first time to measure the initial stage of the anodization process (oxidation) of aluminium samples in aqueous solution. This was carried out chemically in different acid concentrations (3.125–25% H2SO4) at room temperature. The sensor was further used for observation of catalytic activities, i.e., pitting corrosion, which occurred subsequent to the anodization of the aluminium samples in aqueous solutions, after an oxide film had been formed.  相似文献   

4.
K. Habib 《Optik》2009,120(11):530-534
In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the double layer (DL) capacitance of aluminum samples during the initial stage of anodization processes in aqueous solution without any physical contact. In fact, because the DL capacitance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the DL capacitance was called DL capacitance-emission spectroscopy. The anodization process (oxidation) of the aluminum samples was carried out chemically in different sulfuric acid concentrations (0.5-3.125% H2SO4) at room temperature. In the mean time, the real-time holographic interferometry was used to determine the difference of the DL capacitance of two subsequent values, dC, as a function of the elapsed time of the experiment for the aluminum samples in 0.5%, 1.0%, 1.5%, and 3.125% H2SO4 solutions. The DL capacitance-emission spectra of the present investigation represent a detailed picture of not only the rate change of the DL capacitance throughout the anodization processes, but also, the spectra represent the rate change of the growth of the oxide films on the aluminum samples in different solutions. Consequently, holographic interferometry is found very useful for surface-finish industries especially for monitoring the early stage of anodization processes of metals, in which the rate change of DL capacitance of the aluminum samples can be determined in situ.  相似文献   

5.
Optical interferometry techniques were used for the first time to measure the surface resistivity and surface conductivity of anodised aluminium samples in aqueous solution, without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out in different sulphuric acid solutions (1.0–2.5% H2SO4), by the technique of electrochemical impedance spectroscopy (EIS), at room temperature. In the mean time, the real-time holographic interferometric was carried out to measure the thickness of anodised (oxide) film of the aluminium samples during the anodization process. Then, the alternating current (AC) impedance (resistance) of the anodised aluminium samples was determined by the technique of electrochemical impedance spectroscopy (EIS) in different sulphuric acid solutions (1.0–2.5% H2SO4) at room temperature. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the samples in solutions. In other words, a proportionality constant (surface resistivity or surface conductivity=1/surface resistivity) between the determined AC impedance (by EIS technique) and the orthogonal displacement (by the optical interferometry techniques) was obtained. Consequently the surface resistivity (ρ) and surface conductivity (σ) of the aluminium samples in solutions were obtained. Also, electrical resistivity values (ρ) from other source were used for comparison sake with the calculated values of this investigation. This study revealed that the measured values of the resistivity for the anodised aluminium samples were 2.8×109, 7×1012, 2.5×1013, and 1.4×1012  Ω cm in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions, respectively. In fact, the determined value range of the resistivity is in a good agreement with the one found in literature for the aluminium oxide, 85% Al2O3 (5×1010 Ω cm in air at temperature 30 °C), 96% Al2O3 (1×1014  Ω cm in air at temperature 30 °C), and 99.7% Al2O3 (>1×1014 Ω cm in air at temperature 30 °C).  相似文献   

6.
Potentiostatically anodized oxide films on the surface of commercial pure titanium (cp-Ti) formed in sulfuric (0.5 M H2SO4) and in phosphoric (1.4 M H3PO4) acid solutions under variables anodizing voltages were investigated and compared with the native oxide film. Potentiodynamic polarization and electrochemical impedance spectroscopy, EIS, were used to predicate the different in corrosion behavior of the oxide film samples. Scanning electron microscope, SEM, and electron diffraction X-ray analysis, EDX, were used to investigate the difference in the morphology between different types of oxide films. The electrochemical characteristics were examined in phosphate saline buffer solution, PSB (pH 7.4) at 25 °C. Results have been shown that the nature of the native oxide film is thin and amorphous, while the process of anodization of Ti in both acid solutions plays an important role in changing the properties of passive oxide films. Significant increase in the corrosion resistance of the anodized surface film was recorded after 3 h of electrode immersion in PSB. On the other side, the coverage (θ) of film formed on cp-Ti was differed by changing the anodized acid solution. Impedance results showed that both the native film and anodized film formed on cp-Ti consist of two layers. The resistance of the anodized film has reached to the highest value by anodization of cp-Ti in H3PO4 and the inner layer in the anodized film formed in both acid solutions is also porous.  相似文献   

7.
This work presents the performance of a simple Michelson interferometric configuration, allowing monitoring and evaluation of corrosion and oxide layer growth in aluminium during aqueous corrosion processes in a distilled water solution, without any physical contact with the sample. This alternative experimental arrangement introduces a simpler alignment compared with a preliminary proposal [Habib K. In situ measurement of oxide film growth on aluminium samples by holographic interferometry. Corrosion Sci 2001; 43, 449–55], and the obtained interferograms offer a qualitative and possibly quantitative evaluation of an important physical parameter related to the corrosion process kinetics. Interferograms were obtained as a function of time to register changes related to the corrosion dynamics and oxide growth process. Experimental results correlate with the well-known corrosion process taking place over the aluminium sample under these experimental conditions.  相似文献   

8.
Optical non destructive evaluation methods, using lasers as the object illumination source, include holographic interferometry. It is widely used to measure stress, strain, and vibration in engineering structures. Double exposure holographic interferometry (DEHI) technique is used to determine thickness and stress of electrodeposited bismuth trisulphide (Bi2S3) thin films for various deposition times. The same is tested for other concentration of the precursors. It is observed that, increase in deposition time, increases thickness of thin film but decreases stress to the substrate. The structural, optical and surface wettability properties of the as deposited films have been studied using X-ray diffraction (XRD), optical absorption and contact angle measurement, respectively. The X-ray diffraction study reveals that the films are polycrystalline with orthorhombic crystal structure. Optical absorption study shows the presence of direct transition with band bap 1.78 eV. The water contact angle measurement shows hydrophobic nature of Bi2S3 thin film surface.  相似文献   

9.
In this study, the electrochemical performances of different aqueous electrolytes (6 M KOH, 2 M KCl and 0.5 M K2SO4) in activated carbon electrodes are evaluated with regard to their use in electrochemical double layer capacitor (EDLC). The results from cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) were analysed. The lowest value of equivalent series resistance (ESR) and the highest values of specific capacitance and coulombic efficiency were observed, when KOH was the electrolyte. The impedance spectroscopy plots were fitted to an equivalent circuit of ladder type to evaluate the resistances to ion transport at different levels of hierarchies in the pore network. Also, the quality of the double layer capacitance at lower hierarchy that primarily contributes to the overall capacitance of the device was evaluated from the leakage resistance in the equivalent circuit. The fitted circuit parameters were further reviewed vis-à-vis the specific conductance of chosen electrolyte, and the number of successive charge–discharge cycles prior to the EIS measurements.  相似文献   

10.
LiCoO2 particles were synthesized by a sol-gel process. X-ray diffraction analysis reveals that the prepared sample is a single phase with layered structure. A hybrid electrochemical capacitor was fabricated with LiCoO2 as a positive electrode and activated carbon (AC) as a negative electrode in various aqueous electrolytes. Pseudo-capacitive properties of the LiCoO2/AC electrochemical capacitor were determined by cyclic voltammetry, charge–discharge test, and electrochemical impedance measurement. The charge storage mechanism of the LiCoO2-positive electrode in aqueous electrolyte was discussed, too. The results showed that the potential range, scan rate, species of aqueous electrolyte, and current density had great effect on capacitive properties of the hybrid capacitor. In the potential range of 0–1.4 V, it delivered a discharge specific capacitance of 45.9 Fg–1 (based on the active mass of the two electrodes) at a current density of 100 mAg–1 in 1 molL–1 Li2SO4 aqueous electrolyte. The specific capacitance remained 41.7 Fg–1 after 600 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号