首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using chiral perturbation theory we calculate for pion Compton scattering the isospin-breaking effects induced by the difference between the charged and neutral pion mass. At one-loop order this correction is directly proportional to mp±2-mp02\ensuremath{m_{\pi^\pm}^2-m_{\pi^0}^2} and free of (electromagnetic) counterterm contributions. The differential cross-section for charged pion Compton scattering p-g? p-g\ensuremath{\pi^-\gamma \rightarrow \pi^-\gamma} gets affected (in backward directions) at the level of a few permille. At the same time the isospin-breaking correction leads to a small shift of the pion polarizabilities by d(ap- bp) @ 1.3 ·10-5\ensuremath{\delta(\alpha_\pi- \beta_\pi) \simeq 1.3 \cdot 10^{-5}} fm^3. In case of the low-energy gg? p0p0\ensuremath{\gamma\gamma \rightarrow \pi^0\pi^0} reaction isospin breaking manifests itself through a cusp effect at the p+p-\ensuremath{\pi^+\pi^-} threshold. We give an improved estimate for it based on the empirical p \pi p \pi -scattering length difference a0-a2\ensuremath{a_0-a_2} .  相似文献   

2.
3.
Lifetime measurements of excited states in 149Nd have been performed using the advanced time-delayed b \beta g \gamma g \gamma(t) method. Half-lives of 14 excited states in 149Nd have been determined for the first time or measured with higher precision. Twelve new g \gamma -lines and 5 new levels have been introduced into the decay scheme of 149Pr based on results of the g \gamma g \gamma coincidence measurements. Reduced transition probabilities have been determined for 40 g \gamma -transitions in 149Nd . Configuration assignments for 6 rotational bands in 149Nd are proposed. Enhanced E1 transitions indicate that the ground-state band and the band built on the 332.9keV level constitute a pair of the Kp = 5/2±\ensuremath K^{\pi} = 5/2^{\pm} parity doublet bands. Potential energy surfaces on the (b2,b3)\ensuremath (\beta_{2},\beta_{3}) -plane have been calculated for the lowest single quasi-particle configurations in 149Nd using the Strutinski method and the axially deformed Woods-Saxon potential. The predicted occurrence of the octupole-deformed K = 5/2 configuration is in agreement with experiment. Unexpectedly low |D0|\ensuremath \vert D_0\vert values obtained for the Kp = 5/2±\ensuremath K^{\pi} = 5/2^{\pm} parity doublet bands may result from cancellation between the proton and neutron shell correction contributions to |D0|\ensuremath \vert D_0\vert .  相似文献   

4.
5.
In this article, we study the mass spectrum of the baryon-antibaryon bound states p [`(p)] \bar{{p}} , S \Sigma [`(S)] \bar{{\Sigma}} , X \Xi [`(X)] \bar{{\Xi}} , L \Lambda [`(L)] \bar{{\Lambda}} , p [`(N)] \bar{{N}}(1440) , S \Sigma [`(S)] \bar{{\Sigma}}(1660) , X \Xi [`(X)] \bar{{\Xi}}^{{\prime}}_{} and L \Lambda [`(L)] \bar{{\Lambda}}(1600) with the Bethe-Salpeter equation. The numerical results indicate that the p [`(p)] \bar{{p}} , S \Sigma [`(S)] \bar{{\Sigma}} , X \Xi [`(X)] \bar{{\Xi}} , p [`(N)] \bar{{N}}(1440) , S \Sigma [`(S)] \bar{{\Sigma}}(1660) , X \Xi [`(X)] \bar{{\Xi}}^{{\prime}}_{} bound states maybe exist, and the new resonances X(1835) and X(2370) can be tentatively identified as the p [`(p)] \bar{{p}} and p [`(N)] \bar{{N}}(1440) (or N(1400)[`(p)] \bar{{p}} bound states, respectively, with some gluon constituents, and the new resonance X(2120) may be a pseudoscalar glueball. On the other hand, the Regge trajectory favors identifying the X(1835) , X(2120) and X(2370) as the excited h \eta^{{\prime}}_{}(958) mesons with the radial quantum numbers n = 3 , 4 and 5, respectively.  相似文献   

6.
We calculate the one-photon loop radiative corrections to the neutral pion-pair photoproduction process p-g ?p-p0p0\pi^-\gamma \ensuremath \rightarrow\pi^-\pi^0\pi^0 . At leading order this reaction is governed by the chiral pion-pion interaction. Since the chiral p+ \pi^{+}_{} p- \pi^{-}_{} ? \rightarrow p0 \pi^{0}_{} p0 \pi^{0}_{} contact vertex depends only on the final-state invariant mass it factors out of all photon loop diagrams. We give analytical expressions for the multiplicative correction factor R ~ a/2p\ensuremath R\sim \alpha/2\pi arising from eight classes of contributing one-photon loop diagrams. An electromagnetic counterterm has to be included in order to cancel the ultraviolet divergences generated by the photon loops. Infrared finiteness of the virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off l \lambda . The radiative corrections to the total cross-section vary between +2% and -2% for center-of-mass energies from threshold up to 7mp\ensuremath 7m_{\pi} . We study also the radiative corrections to the p0p0\ensuremath \pi^0\pi^0 mass spectrum.  相似文献   

7.
Investigations of disperse nonmetallic inclusions in unalloyed alpha titanium VT1-0 have been performed by using transmission electron (including scanning and high-resolution) microscopy. Characteristic electron energy losses spectroscopy has shown that these inclusions are titanium carbide particles. It has been revealed that the disperse carbides are formed in the titanium hcp matrix as a phase based on the fcc sublattice of titanium atoms. The inclusion–matrix orientation relationship corresponds to the well-known Kurdyumov–Sachs and Nishiyama–Wassermann relationships [ 2[`11] 0 ]\upalpha ||[ 011 ]\updelta \text and ( 000[`1] )\upalpha ||( 1[`1] 1 )\updelta {\left[ {2\overline {11} 0} \right]_{{\upalpha }}}\parallel {\left[ {011} \right]_{{\updelta }}}{\text{ and }}{\left( {000\overline 1 } \right)_{{\upalpha }}}\parallel {\left( {1\overline 1 1} \right)_{{\updelta }}} .  相似文献   

8.
A global analysis of the world data on differential cross-sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3GeV is performed in a Regge model. Including the Na\ensuremath N_{\alpha} , Ng\ensuremath N_{\gamma} , Dd\ensuremath \Delta_{\delta} and Db\ensuremath \Delta_{\beta} trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable u , in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3GeV. Our analysis suggests a G39\ensuremath G_{39} -resonance with a mass of 2.83GeV as member of the Db\ensuremath \Delta_{\beta} -trajectory from the corresponding Chew-Frautschi plot.  相似文献   

9.
The polarizations of Λ and [`\varLambda]{\bar{\varLambda}} are thought to retain memories of the spins of their parent s quarks and [`(s)]{\bar{s}} antiquarks, and are readily measurable via the angular distributions of their daughter protons and antiprotons. Correlations between the spins of Λ and [`\varLambda]{\bar{\varLambda}} produced at low relative momenta may therefore be used to probe the spin states of s [`(s)]s {\bar{s}} pairs produced during hadronization. We consider the possibilities that they are produced in a 3P0 state, as might result from fluctuations in the magnitude of á[`(s)] s ?\langle {\bar{s}} s \rangle, a 1S0 state, as might result from chiral fluctuations, or a 3S1 or other spin state, as might result from production by a quark–antiquark or gluon pair. We provide templates for the p [`(p)]p {\bar{p}} angular correlations that would be expected in each of these cases, and discuss how they might be used to distinguish s [`(s)]s {\bar{s}} production mechanisms in pp and heavy-ion collisions.  相似文献   

10.
In Deng et al. (Eur. Phys. J. C 70:113, 2010), we have dealt with the production of the two color-singlet S-wave (c[`(b)])(c\bar{b})-quarkonium states Bc(|(c[`(b)])1[1S0]?)B_{c}(|(c\bar {b})_{\mathbf{1}}[^{1}S_{0}]\rangle) and B*c(|(c[`(b)])1[3S1]?)B^{*}_{c}(|(c\bar{b})_{\mathbf{1}}[^{3}S_{1}]\rangle) through the Z 0 boson decays. As an important sequential work, we make a further discussion on the production of the more complicated P-wave excited (c[`(b)])(c\bar{b})-quarkonium states, i.e. |(c[`(b)])1[1P1]?|(c\bar{b})_{\mathbf{1}}[^{1}P_{1}]\rangle and |(c[`(b)])1[3PJ]?|(c\bar{b})_{\mathbf{1}}[^{3}P_{J}]\rangle (with J=(1,2,3)). More over, we also calculate the channel with the two color-octet quarkonium states |(c[`(b)])8[1S0]g?|(c\bar{b})_{\mathbf{8}}[^{1}S_{0}]g\rangle and |(c[`(b)])8[3S1]g?|(c\bar{b})_{\mathbf{8}}[^{3}S_{1}]g\rangle, whose contributions to the decay width maybe at the same order of magnitude as that of the color-singlet P-wave states according to the naive nonrelativistic quantum chromodynamics scaling rules. The P-wave states shall provide sizable contributions to the B c production, whose decay width is about 20% of the total decay width \varGamma Z0? Bc\varGamma _{Z^{0}\to B_{c}}. After summing up all the mentioned (c[`(b)])(c\bar {b})-quarkonium states’ contributions, we obtain \varGamma Z0? Bc=235.9+352.8-122.0\varGamma _{Z^{0}\to B_{c}}=235.9^{+352.8}_{-122.0} KeV, where the errors are caused by the main sources of uncertainty.  相似文献   

11.
The deep quench obstacle problem models phase separation at low temperatures. During phase separation, domains of high and low concentration are formed, then coarsen or grow in average size. Of interest is the time dependence of the dominant length scales of the system. Relying on recent results by Novick-Cohen and Shishkov (Discrete Contin. Dyn. Syst. B 25:251–272, 2009), we demonstrate upper bounds for coarsening for the deep quench obstacle problem, with either constant or degenerate mobility. For the case of constant mobility, we obtain upper bounds of the form t 1/3 at early times as well as at times t for which E(t) £ \frac(1-[`(u)]2)4E(t)\le\frac{(1-\overline{u}^{2})}{4}, where E(t) denotes the free energy. For the case of degenerate mobility, we get upper bounds of the form t 1/3 or t 1/4 at early times, depending on the value of E(0), as well as bounds of the form t 1/4 whenever E(t) £ \frac(1-[`(u)]2)4E(t)\le\frac{(1-\overline{u}^{2})}{4}.  相似文献   

12.
For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle [`(E)](kf)\ensuremath \bar E(k_f) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to [`(E)](kf) ~ kf10\ensuremath \bar E(k_f)\sim k_f^{10} with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction.  相似文献   

13.
In this article, we assume that there exist scalar D*[`(D)]*{D}^{\ast}{\bar {D}}^{\ast}, Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*{B}^{\ast}{\bar {B}}^{\ast} and Bs*[`(B)]s*{B}_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states, and study their masses using the QCD sum rules. The numerical results indicate that the masses are about (250–500) MeV above the corresponding D *–[`(D)]*{\bar{D}}^{\ast}, D s *–[`(D)]s*{\bar {D}}_{s}^{\ast}, B *–[`(B)]*{\bar{B}}^{\ast} and B s *–[`(B)]s*{\bar {B}}_{s}^{\ast} thresholds, the Y(4140) is unlikely a scalar Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast} molecular state. The scalar D*[`(D)]*D^{\ast}{\bar{D}}^{\ast}, Ds*[`(D)]s*D_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*B^{\ast}{\bar{B}}^{\ast} and Bs*[`(B)]s*B_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states maybe not exist, while the scalar D*[`(D)]¢*{D'}^{\ast}{\bar{D}}^{\prime\ast}, Ds¢*[`(D)]s¢*{D}_{s}^{\prime\ast}{\bar{D}}_{s}^{\prime\ast}, B¢*[`(B)]¢*{B}^{\prime\ast}{\bar{B}}^{\prime\ast} and Bs¢*[`(B)]s¢*{B}_{s}^{\prime\ast}{\bar{B}}_{s}^{\prime\ast} molecular states maybe exist.  相似文献   

14.
The energies of surface defects in the basal and prismatic planes, as well as in the planes of type I and type II pyramids, are calculated by using N-particle interaction potentials for the Ti3Al intermetallic with the D019 superlattice. The core structure of 2c + a edge and screw glissile and sessile (barrier-forming) dislocations in pyramidal planes of type I, { 20[`2] 1}\{ 20\overline 2 1\} , and type II, {[`1][`1] 21}\{ \overline 1 \overline 1 21\} , in Ti3Al is analyzed.  相似文献   

15.
A possibility of KLOE-2 experiment to measure the width \varGammap0 ?gg\varGamma_{\pi^{0} \to\gamma\gamma} and the π 0 γγ form factor F(Q 2) at low invariant masses of the virtual photon in the space-like region is considered. This measurement is an important test of the strong interaction dynamics at low energies. The feasibility is estimated on the basis of a Monte-Carlo simulation. The expected accuracy for \varGammap0 ?gg\varGamma_{\pi^{0} \to\gamma\gamma} is at a per cent level, which is better than the current experimental world average and theory. The form factor will be measured for the first time at Q 2≤0.1 GeV2 in the space-like region. The impact of these measurements on the accuracy of the pion-exchange contribution to the hadronic light-by-light scattering part of the anomalous magnetic moment of the muon is also discussed.  相似文献   

16.
To solve the discrepancy between the experimental data on the partial widths and lineshapes of the dipion emission of ϒ(4S) and the theoretical predictions, we suggest that there is an additional contribution, which had not been taken into account in previous calculations. Noticing that the mass of ϒ(4S) is above the production threshold of B[`(B)]B\bar{B}, the contribution of the sequential process \varUpsilon(4S)? B[`(B)]? \varUpsilon(nS)+S?\varUpsilon(nS)+p+p-\varUpsilon(4S)\to B\bar{B}\to \varUpsilon(nS)+S\to\varUpsilon(nS)+\pi^{+}\pi^{-} (n=1,2) may be sizable, and its interference with that from the direct production would be important. The goal of this work is to investigate if a sum of the two contributions with a relative phase indeed reproduces the data. Our numerical results on the partial widths and the lineshapes d\varGamma(\varUpsilon(4S)?\varUpsilon(2S,1S)p+p-)/d(mp+p-)d\varGamma(\varUpsilon(4S)\to\varUpsilon(2S,1S)\pi^{+}\pi^{-})/d(m_{\pi ^{+}\pi^{-}}) are satisfactorily consistent with the measurements; thus the role of this mechanism is confirmed. Moreover, with the parameters obtained by fitting the data of the Belle and BaBar collaborations, we predict the distributions (ϒ(4S)→ϒ(2S,1S)π + π )/dcosθ, which have not been measured yet.  相似文献   

17.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

18.
We calculate the masses of the resonances Ds0*(2317)\ensuremath D_{s0}^{\ast}(2317) and Ds1(2460)\ensuremath D_{s1}(2460) as well as their bottom partners as bound states of a kaon and a D(*)\ensuremath D^{(\ast)} - and B(*)\ensuremath B^{(\ast)} -meson, respectively, in unitarized chiral perturbation theory at next-to-leading order. After fixing the parameters in the Ds0*(2317)\ensuremath D_{s0}^{\ast}(2317) channel, the calculated mass for the Ds1(2460)\ensuremath D_{s1}(2460) is found in excellent agreement with experiment. The masses for the analogous states with a bottom quark are predicted to be MB*s0=(5696±40)\ensuremath M_{B^{\ast}_{s0}}=(5696\pm 40) MeV and MBs1=(5742±40)\ensuremath M_{B_{s1}}=(5742\pm 40) MeV in reasonable agreement with previous analyses. In particular, we predict MBs1-MBs0*=46±1\ensuremath M_{B_{s1}}{-}M_{B_{s0}^{\ast}}=46\pm 1 MeV. We also explore the dependence of the states on the pion and kaon masses. We argue that the kaon mass dependence of a kaonic bound state should be almost linear with slope about unity. Such a dependence is specific to the assumed molecular nature of the states. We suggest to extract the kaon mass dependence of these states from lattice QCD calculations.  相似文献   

19.
Based on the color–spin interaction in diquarks, we argue why some multiquark configurations could be stable against strong decay when heavy quarks are included. After showing the stability of previously discussed states we identify new possible stable states. These are the T0cb(ud[`(c)][`(b)])T^{0}_{cb}(ud\bar{c}\bar{b}) tetraquark, the \varTheta bs(udus[`(b)])\varTheta _{bs}(udus\bar{b}) pentaquark and the H c (udusuc) dibaryon, and so forth.  相似文献   

20.
A gauge model featuring a chiral color symmetry of quarks was considered, and possible manifestations of this symmetry in proton-antiproton and proton-proton collisions at the Tevatron and LHC energies were studied. The cross section st[`(t)]\sigma _{t\bar t} for the production of t[`(t)]t\bar t quark pairs at the Tevatron and the forward-backward asymmetry AFBp[`(p)]A_{FB}^{p\bar p} in this process were calculated and analyzed with allowance for the contributions of the G′-boson predicted by the chiral color symmetry of quarks, the G′-boson massm G and the mixing angle θ G being treated as free parameters of the model. Limits on m G versus θ G were studied on the basis of data from the Tevatron on st[`(t)]\sigma _{t\bar t} and AFBp[`(p)]A_{FB}^{p\bar p}, and the region compatible with these data within one standard deviation was found in the m G-θ G plane. The region ofm G-mass values that is appropriate for observing the G′-boson at LHC is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号