首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
赵灵冬  胡建兵  刘旭辉 《物理学报》2010,59(4):2305-2309
基于分数阶系统稳定性理论,设计了控制器和未知参数的辨识规则,实现了分数阶超混沌Lorenz系统同给定信号的追踪控制与同步.数值仿真证实了所设计的控制器及未知参数辨识规则的有效性. 关键词: 分数阶 超混沌 追踪控制与同步 自适应  相似文献   

2.
自适应同步参数未知的异结构分数阶超混沌系统   总被引:2,自引:0,他引:2       下载免费PDF全文
胡建兵  韩焱  赵灵冬 《物理学报》2009,58(3):1441-1445
基于分数阶系统稳定理论,实现了分数阶超混沌CYQY系统与参数未知的分数阶超混沌Lorenz系统间的异结构自适应同步.不仅设计了控制器,还设计了参数自适应规则并保留了非线性项.数值仿真证实了自适应控制器的有效性. 关键词: 分数阶 超混沌 同步 自适应  相似文献   

3.
基于自适应模糊控制的分数阶混沌系统同步   总被引:1,自引:0,他引:1       下载免费PDF全文
陈晔  李生刚  刘恒 《物理学报》2016,65(17):170501-170501
本文主要研究了带有未知外界扰动的分数阶混沌系统的同步问题.基于分数阶Lyapunov稳定性理论,构造了分数阶的参数自适应规则以及模糊自适应同步控制器.在稳定性分析中主要使用了平方Lyapunov函数.该控制方法可以实现两分数阶混沌系统的同步,使得同步误差渐近趋于0.最后,数值仿真结果验证了本文方法的有效性.  相似文献   

4.
刘恒  李生刚  孙业国  王宏兴 《物理学报》2015,64(7):70503-070503
针对带有非对称控制增益的不确定分数阶混沌系统的同步问题设计了模糊自适应控制器. 模糊逻辑系统用来逼近未知的非线性函数, 非对称的控制增益矩阵被分解为一个未知的正定矩阵、一个对角线上元素为+1或-1的已知对角矩阵和 一个未知的上三角矩阵的乘积. 基于分数阶Lyapunov稳定性理论构造了模糊控制器以及分数阶的参数自适应律, 在保证所有变量有界的情况下实现驱动系统和响应系统的同步. 在分数阶系统稳定性分析中给出了一种平方Lyapunov函数的使用方法, 根据此方法很多针对整数阶系统的控制方法可以推广到分数阶系统中. 最后数值仿真结果验证了所提控制方法的可行性.  相似文献   

5.
王聪  张宏立 《物理学报》2016,65(6):60503-060503
未知分数阶混沌系统参数辨识问题可转化为函数优化问题, 是实现分数阶混沌系统同步与控制的关键. 结合正交学习机制和原对偶学习策略, 提出一种原对偶状态转移算法, 用于解决分数阶混沌系统的参数辨识问题. 利用正交学习机制产生较优的初始种群增加算法的收敛能力, 并引入原对偶操作增加状态在空间的搜索能力, 提高算法的寻优性能. 在有噪声和无噪声情况下以分数阶多涡卷混沌系统的参数辨识为研究对象进行仿真. 结果表明了该算法的有效性、鲁棒性和通用性.  相似文献   

6.
不确定Chen系统的参数辨识与自适应同步   总被引:6,自引:0,他引:6       下载免费PDF全文
王兴元  武相军 《物理学报》2006,55(2):605-609
研究了不确定Chen系统的自适应同步和参数辨识,设计了自适应控制器和参数更新规则,理论证明了该控制器可使得两个Chen系统——驱动系统和未知参数的响应系统渐进地达到同步,并且可以辨识出响应系统的未知参数.数值模拟结果证明了该控制器的有效性. 关键词: 不确定Chen系统 自适应同步 参数辨识 控制器  相似文献   

7.
贾雅琼  蒋国平 《物理学报》2017,66(16):160501-160501
研究分数阶时滞混沌系统同步问题,基于状态观测器方法和分数阶系统稳定性理论,设计分数阶时滞混沌系统同步控制器,使得分数阶时滞混沌系统达到同步,同时给出了数学证明过程.该同步控制器采用驱动系统和响应系统的输出变量进行设计,无需驱动系统和响应系统的状态变量,简化了控制器的设计,提高了控制器的实用性.利用Lyapunov稳定性理论和分数阶线性矩阵不等式,研究并给出了同步控制器参数的选择条件.以分数阶时滞Chen混沌系统为例,设计基于状态观测器的同步控制器,实现了分数阶时滞Chen混沌系统同步,并将其应用于保密通信系统中.仿真结果证明了该同步方法的有效性.  相似文献   

8.
李睿  张广军  姚宏  朱涛  张志浩 《物理学报》2014,63(23):230501-230501
为进一步增强通信系统中保密通信的安全性,结合广义错位投影同步和延时投影同步,提出了广义错位延时投影同步.以分数阶Chen系统和Lü系统为例,针对两系统参数都不确定,基于分数阶稳定性理论与自适应控制方法,设计了非线性控制器和参数自适应律,实现了广义错位延时同步,并辨识出驱动系统和响应系统中所有不确定参数.理论分析和数值仿真验证了该方法的可行性与有效性.  相似文献   

9.
林飞飞  曾喆昭 《物理学报》2017,66(9):90504-090504
针对带有完全未知的非线性不确定项和外界扰动的异结构分数阶时滞混沌系统的同步问题,基于Lyapunov稳定性理论,设计了自适应径向基函数(radial basis function,RBF)神经网络控制器以及整数阶的参数自适应律.该控制器结合了RBF神经网络和自适应控制技术,RBF神经网络用来逼近未知非线性函数,自适应律用于调整控制器中相应的参数.构造平方Lyapunov函数进行稳定性分析,基于Barbalat引理证明了同步误差渐近趋于零.数值仿真结果表明了该控制器的有效性.  相似文献   

10.
孙洁  刘树堂  乔威 《物理学报》2011,60(7):70510-070510
本文研究了一类相当广泛的复系统Julia 集的参数辨识问题.基于非线性反馈控制器和差分方程稳定性理论, 设计了普遍适用的自适应同步控制器和参数自适应律的解析表达式.理论证明设计的控制器可使得此类广义复系统Julia 集达到同步,并且可以辨识广义Julia 集的未知参数.通过仿真实例验证了该方法的有效性.另外, 本文特别地讨论了最基本的Julia 集的参数辨识问题. 关键词: Julia集 参数辨识 同步  相似文献   

11.
Based on the new type of fractional integral definition, namely extended exponentially fractional integral introduced by EI-Nabulsi, we study the fractional Noether symmetries and conserved quantities for both holonomic system and nonholonomic system. First, the fractional variational problem under the sense of extended exponentially fractional integral is established, the fractional d’Alembert-Lagrange principle is deduced, then the fractional Euler-Lagrange equations of holonomic system and the fractional Routh equations of nonholonomic system are given; secondly, the invariance of fractional Hamilton action under infinitesimal transformations of group is also discussed, the corresponding definitions and criteria of fractional Noether symmetric transformations and quasi-symmetric transformations are established; finally, the fractional Noether theorems for both holonomic system and nonholonomic system are explored. What’s more, the relationship between the fractional Noether symmetry and conserved quantity are revealed.  相似文献   

12.
The Liouville and first Bogoliubov hierarchy equations with derivatives of noninteger order are derived. The fractional Liouville equation is obtained from the conservation of probability to find a system in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and fractional kinetic equations with fractional derivatives. Statistical mechanics of fractional generalization of the Hamiltonian systems is discussed. Liouville and Bogoliubov equations with fractional coordinate and momenta derivatives are considered as a basis to derive fractional kinetic equations. The Fokker-Planck-Zaslavsky equation that has fractional phase-space derivatives is obtained from the fractional Bogoliubov equation. The linear fractional kinetic equation for distribution of the charged particles is considered.  相似文献   

13.
We examine a numerical method to approximate to a fractional diffusion equation with the Riesz fractional derivative in a finite domain, which has second order accuracy in time and space level. In order to approximate the Riesz fractional derivative, we use the “fractional centered derivative” approach. We determine the error of the Riesz fractional derivative to the fractional centered difference. We apply the Crank–Nicolson method to a fractional diffusion equation which has the Riesz fractional derivative, and obtain that the method is unconditionally stable and convergent. Numerical results are given to demonstrate the accuracy of the Crank–Nicolson method for the fractional diffusion equation with using fractional centered difference approach.  相似文献   

14.
In this paper, we present a basic theory of fractional dynamics, i.e., the fractional conformal invariance of Mei symmetry, and find a new kind of conserved quantity led by fractional conformal invariance. For a dynamical system that can be transformed into fractional generalized Hamiltonian representation, we introduce a more general kind of single-parameter fractional infinitesimal transformation of Lie group, the definition and determining equation of fractional conformal invariance are given. And then, we reveal the fractional conformal invariance of Mei symmetry, and the necessary and sufficient condition whether the fractional conformal invariance would be the fractional Mei symmetry is found. In particular, we present the basic theory of fractional conformal invariance of Mei symmetry and it is found that, using the new approach, we can find a new kind of conserved quantity; as a special case, we find that an autonomous fractional generalized Hamiltonian system possesses more conserved quantities. Also, as the new method’s applications, we, respectively, find the conserved quantities of a fractional general relativistic Buchduhl model and a fractional Duffing oscillator led by fractional conformal invariance of Mei symmetry.  相似文献   

15.
In this paper, we present the fractional Mei symmetrical method of finding conserved quantity and explore its applications to physics. For the fractional generalized Hamiltonian system, we introduce the fractional infinitesimal transformation of Lie groups and, under the transformation, give the fractional Mei symmetrical definition, criterion and determining equation. Then, we present the fractional Mei symmetrical theorem of finding conserved quantity. As the fractional Mei symmetrical method’s applications, we respectively find the conserved quantities of a fractional general relativistic Buchduhl model, a fractional three-body model and a fractional Robbins–Lorenz model.  相似文献   

16.
In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canonical Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange formulations lead to the same set of equations.  相似文献   

17.
This paper presents a fractional Schrödinger equation and its solution. The fractional Schrödinger equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives to obtain the fractional Euler-Lagrange equations of motion. We present the Lagrangian for the fractional Schrödinger equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Schrödinger equation which is the same as that obtained using the fractional variational principle. As an example, we consider the eigensolutions of a particle in an infinite potential well. The solutions are obtained in terms of the sines of the Mittag-Leffler function.  相似文献   

18.
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler–Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler–Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor–corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.  相似文献   

19.
In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. Firstly, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.  相似文献   

20.
张毅 《中国物理 B》2012,21(8):84502-084502
In this paper,we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system.A combined Riemann-Liouville fractional derivative operator is defined,and a fractional Hamilton principle under this definition is established.The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle.A number of special cases are given,showing the universality of our conclusions.At the end of the paper,an example is given to illustrate the application of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号