首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ν1 (A1, 1578.31 cm−1)/ν4(E, 1615.17 cm−1) Si-D stretching dyad of D3SiF has been studied by FTIR spectroscopy with a resolution of 2.4×10−3 cm−1. Only weak interactions of Coriolis (ΔK=±1, Δ?=±1) and α resonance (ΔK=±2, Δ?=?1) type between ν1 and ν4, and of ? (2,−4) type within ν4, were revealed. However, the v1=1 and v4=1 levels were found to be severely perturbed by the v3=v5=1 (E, 1590.37 cm−1) and v2=v3=1 (A1, 1604.25 cm−1) states. These perturbations are observable only near level crossings involving strong Coriolis and α interactions. The energy structure within these perturbers is severely complicated by strong Coriolis and α resonances and by ? (2, 2), ? (2,−1), and ? (2,−4) interactions as already revealed by the ν2(A1, 710.16 cm−1) and ν5 (E, 701.72 cm−1) fundamentals. Interactions of the perturbing states with the ν14 dyad are particularly evident in local crossings. In total, 12 transitions belonging to the dark states and 68 perturbation-allowed transitions within the ν14 dyad have been detected among the more than 5000 transitions that have been assigned for the ν14 dyad, with Jmax and Kmax of 50 and 30, respectively. Altogether about 85% of the assigned transitions were fitted with a standard deviation of 0.221×10−3 cm−1, leading to 61 parameters of the interacting polyad.  相似文献   

2.
The ν1 (A1, 1583.22 cm−1) and ν4 (E, 1615.33 cm−1) Si-D stretching bands of monoisotopic D3Si35Cl have been studied by FTIR spectroscopy with a resolution of 3.3×10−3 cm−1. We have assigned 2341 rovibrational lines for ν1 (Jmax=70, Kmax=19) and 6207 for ν4 (Jmax=75, Kmax=27). Both (ΔK=±1, Δ?=±1) and (ΔK=±2, Δ?=?1) interactions connect the v1=1 and v4=1 levels, the latter exerting moreover a weak ?(2, 2) interaction. These interactions were taken into account in a nonlinear least-squares fit, refining 29 free parameters with a standard deviation of 0.257×10−3 cm−1 over 6722 nonzero-weighted data. Blended lines and about 250 of the 330 lines belonging to the K=11 subband of ν1 and the KΔK=−6 subband of ν4 were zero-weighted because they are locally perturbed respectively by the neighboring upper states of the 2ν36 (E, 1561.95 cm−1) and 3ν3 (A1, 1604.81 cm−1) bands. Equivalent fits were obtained for altogether three different models obeying constraints according to the theory of unitary equivalent reductions of the rovibrational Hamiltonian. By means of a band contour simulation both the transition moment ratio |M1:M4|=0.67 and a positive sign of the Coriolis intensity perturbation were determined.  相似文献   

3.
The Fourier transform infrared spectrum of H3SiI has been recorded in the ν14region from 2075 to 2315 cm−1at an optical resolution of 2.3 × 10−3cm−1. The ν14fundamental bands and the (ν1+ ν3) − ν3/(ν4+ ν3) − ν3hot bands have been rotationally investigated. Numerous local perturbations have been observed in the ν1and ν4bands and in the hot bands. Without the lines involved in perturbations, more than 2900 transitions of the ν14bands were used to determine the band origins and the vibration–rotation parameters of the ν1= 1 and νv4= 1 states. A least-squares fit of 766 apparently unperturbed transitions of the hot bands gave the parameters of the ν1= ν3= 1 and ν4= ν3= 1 states. Thel(2, 2) resonance in ν4and theA1–E Coriolis coupling between ν1and ν4have been investigated. Most of the local perturbations have been studied individually using a simple model by which the main perturber for each resonance was identified.  相似文献   

4.
The C-H stretching fundamental band ν1 (3033 cm−1) of chloroform CH35Cl3 has been investigated together with the first overtone 2ν1 (5941 cm−1) in order to determine the rotation vibration parameters. From the ν1 band α1C=−0.025 46(41)×10−3 cm−1 and α1B=−0.010 688(44)×10−3 cm−1 were obtained. The hot bands connected to the low lying fundamentals ν3 and ν6 have been analyzed and anharmonicity constants have been derived. Both the parallel and the perpendicular component band of the C-H bending overtone 2ν4 have also been studied. In the parallel band (2410 cm−1) more than 900 lines were included in the fit. In the perpendicular band (2443 cm−1) 2615 lines were fitted using a model with one resonance. Among other things the results C0Cv=0.025 262 (20)×10−3 cm−1, B0Bv=0.134 883 (25)×10−3 cm−1, and (Cζ)v=−0.111 867 56 (30) cm−1 were obtained.  相似文献   

5.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives rms = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

6.
Further analysis of the high-resolution (0.0015 cm−1) infrared spectrum of 32S16O3 has led to the assignment of more than 3100 hot band transitions from the ν2 and ν4 levels to the states 2ν2 (l=0), ν24 (l=±1), and 2ν4 (l=0,±2). These levels are strongly coupled via Fermi resonance and indirect Coriolis interactions to the ν1 levels, which are IR-inaccessible from the ground state. The unraveling of these interactions has allowed the solution of the unusual and complicated structure of the ν1 CARS spectrum. This has been accomplished by locating over 400 hot-band transitions to levels that contain at least 10% ν1 character. The complex CARS spectrum results from a large number of avoided energy-level crossings between these states. Accurate rovibrational constants are deduced for all the mixed states for the first time, leading to deperturbed values of 1064.924(11), 0.000 840 93(64), and 0.000 418 19(58) cm−1 for ν1, α1B, and α1C, respectively. The uncertainties in the last digits are shown in parentheses and represent two standard deviations. In addition, new values for some of the anharmonicity constants have been obtained. Highly accurate values for the equilibrium rotational constants Be and Ce are deduced, yielding independent, nearly identical values for the SO re bond length of 141.734 03(13) and 141.732 54(18) pm, respectively.  相似文献   

7.
8.
We record double resonance spectra of the 4ν1 band of jet-cooled 13C-methanol using single rotational state selection in the ν1 fundamental and subsequent promotion of the selected molecules to the fourth vibrational level. We then detect transitions to the final excited states by infrared laser assisted photofragment spectroscopy (IRLAPS). The assigned A symmetry transitions reach upper states with K=0 and 1, and J from 0 to 5. For E symmetry, the transitions reach levels with K in the range −3 to 2 and J from 1 to 7. The rotation-torsional analysis determines a value for the torsional tunneling splitting of 2.8±0.4 cm−1 at v1=4. In a previous paper (J. Chem. Phys.110, 11 359-11 367 (1999)), we reported a trend of monotonically decreasing tunneling splittings in 12CH3OH for v1=0, 3, and 6 that we explained by a model that incorporates a linear increase in the torsional barrier height with OH stretch excitation. The 13CH3OH tunneling splitting for the 4ν1 band is in quantitative agreement with the trend found for 12CH3OH.  相似文献   

9.
The (ν4?+?ν6)???ν4, (ν4?+?ν8)???ν4 and (ν4?+?ν9)???ν4 hot infrared systems of disilane (Si2H6) have been analysed at high resolution, and the values of the relative vibration–rotation–torsion parameters have been determined. The torsional splitting is about 0.500?cm?1 in the ν4 and ν4?+?ν6 states, and decreases strongly in the vibrationally degenerate upper states ν4?+?ν8 (about 0.0272?cm?1 on average) and ν4?+?ν9 (about 0.3019?cm?1), consistent with theoretical predictions. Comparison between the vibrational wavenumbers of cold transitions and hot transitions originating in the excited torsional state v4?=?1 allows one to determine the change of the fundamental torsional frequency ν4 caused by the excitation of small amplitude vibrations. A remarkable increase in ν4 of about 8.599?cm?1 is found in the v9?=?1 state (E1d SiH3-rocking mode, asymmetric to inversion in the staggered geometry), and this corresponds to an increase in the torsional barrier height in this excited fundamental vibrational state by about 48.77?cm?1. The mechanism responsible for the decrease of the torsional splittings in the degenerate vibrational states is briefly outlined by means of second-order perturbation theory, using torsion-hindered vibrational basis functions of E1d and E2d symmetries for the degenerate modes.  相似文献   

10.
The four fundamental bands of 70GeD4 have been analyzed using the STDS software developed in Dijon (http://www.u-bourgogne.fr/LPUB/sTDS.html). Both infrared and Raman spectra were used to observe all fundamental bands. Infrared spectra of monoisotopic 70GeD4 were recorded in the regions 600 and 1500 cm−1 using the Bruker 120HR interferometer at Wuppertal. The resolution (1/maximum optical path difference) was between 2.3 and 3.3×10−3 cm−1 for the ν3 and ν4 infrared-active fundamental bands as well as for the interacting ν2 band. A high-resolution stimulated Raman spectrum of the ν1 band has been recorded in Madrid. The instrumental resolution of the Raman spectrum was 3.3×10−3 cm−1. We have performed a global fit of the ground state, ν24 bending dyad, and ν13 stretching dyad. We have used 1146, 139, and 676 assigned lines for ν24, ν1, and ν3, respectively. The standard deviation is 2.2×10−3 cm−1 for the bending dyad, 1.6×10−3 cm−1 for the ν3 infrared lines, and 1.7×10−3 cm−1 for the ν1 Raman lines. These results enabled us to perform the first experimental determination of the equilibrium bond length of germane as re=1.5173(1) Å.  相似文献   

11.
The microwave and submillimeter wave spectra of propyne between 17 and 358 GHz were measured and the rotational transitions in thev8= 1 excited vibrational state of the CH3rocking vibration were assigned. About 1050 wavenumbers of the ν8vibration–rotation fundamental band and about 600 wavenumbers of the ν5fundamental band of the[formula]stretching vibration were assigned from the infrared spectrum between 910 and 1130 cm−1which was used previously (G. Graneret al., J. Mol. Spectrosc.161,80–101 (1993)) in the analysis of the combinationv9=v10= 1 and thev10= 3 overtone levels (ν9being the[formula]bending and ν10the[formula]bending vibrations). The rovibrational and rotational data corresponding to the two fundamental levels were analyzed simultaneously in least-squares fits using a model which treats together all the vibrational levels in the region around 1000 cm−1with their strong anharmonic and vibration–rotation resonances. The refined parameters reproduce the infrared and submillimeter wave data of thev5= 1 level with standard deviations of 0.32 × 10−3cm−1and 59 kHz, respectively, while for thev8= 1 level the standard deviations were 0.41 × 10−3cm and 290 kHz. The refined parameters of the combination and overtone levels provide reliable predictions for future submillimeter wave studies.  相似文献   

12.
As part of the simultaneous analysis of line positions and intensities of the first two polyads of monodeuterated methane, the results achieved for the region 3-5 μm are reported. It involves the three highest fundamentals, (ν1, ν2, ν4), overlapped by overtone (2ν3, 2ν5, 2ν6) and combination (ν36, ν35, ν56) bands. The theoretical model was based on the global tensorial model implemented in the MIRS package. Some 10 000 line positions and 2400 line intensities have been modeled to ±0.000 88 cm−1 and ±3.6% respectively, using measurements obtained at 0.0056 and 0.011 cm−1 resolution with the Fourier transform spectrometer at National Solar Observatory located at Kitt Peak. The strongest band in this polyad is ν4(E) at 3016.7 cm−1 with a strength of 6.3×10−18 cm−1/(molecule cm−2) at 296 K; the weakest band is 2ν3(E) at 2597.7 cm−1 with a strength of 1.9×10−20 cm−1/(molecule cm−2) at 296 K. The total calculated absorption arising from the CH3D nonad is 8.95×10−18 cm−1/(molecule cm−2) at 296 K.  相似文献   

13.
The nν1 SiH stretching overtone transitions of trideuterosilane, HSiD3, have been recorded by Fourier transform spectroscopy (n=3 and 4) and by intracavity laser absorption spectroscopy (n=5 and 6). The unusually weak 3ν1 band is affected by considerable intensity and energy perturbations. The 4ν1 band is also strongly perturbed but the interaction with the dark states is more limited and part of the rotational structure of the v1=4 upper state could be satisfactorily modeled. Less pronounced perturbations affect the v1=5 level, newly detected by ICLAS. Its rotational structure is locally perturbed by anharmonic coupling with an unidentified vibrational dark state. The global modeling of the interacting dyad allowed the determination of the perturber parameters and the assignment of extra lines due to an intensity transfer from the v1=5 bright state to the dark state. In agreement with a previous ICLAS study, the 6ν1 band near 12 113 cm−1 was found free of perturbation. About six hundred line positions could be reproduced with an rms of 4.6×10−3 cm−1, leading to a significantly improved set of rovibrational parameters. The striking evolution of the rotational structure, which exhibits fewer and fewer perturbations when the SiH excitation increases, is discussed.  相似文献   

14.
The infrared spectrum of the PD3 molecule has been measured in the region of the first stretching overtone bands on a Fourier transform spectrometer with a resolution of 0.0068 cm−1 and analyzed for the first time. More than 800 transitions with Jmax=15 have been assigned to the bands 2ν1 and ν1+ν3. An effective Hamiltonian was used which takes into account both the presence of resonance interactions between the states (2 0 0 0) and (1 0 1 0), and interactions of these with the third stretching vibrational state of the v=2 polyad, (0 0 2 0). A set of 44 spectroscopic parameters is obtained from the fit. This reproduces the 305 initial “experimental” upper rovibrational energies with an rms=0.0015 cm−1.  相似文献   

15.
The lowest frequency parallel fundamental band ν3 of ethane is Raman active. A stimulated Raman spectrum of the Q branch for this band at a resolution of 0.0055 cm−1 has been measured by D. Bermejo et al. (1992, J. Chem. Phys.97, 7055). The torsion-rotation series in this band with σ=3, where σ=0, 1, 2, and 3 labels the torsional sublevels, is perturbed by over 1 cm−1. The lowest frequency-degenerate fundamental ν9 is infrared active. A high-resolution (0.0014 cm−1) Fourier transform spectrum of this band has been measured by N. Moazzen-Ahmadi et al. (1999, J. Chem. Phys.111, 9609). The observed torsional splittings for this band are substantially larger than expected from the observed barrier height. Because of a near-degeneracy of the upper level in the ν9 band with its interacting partner (v9=0, v4=3) a perturbation allowed band 3ν4 has also been observed. We have carried out a combined analysis of ν3, ν9, and 3ν4 together with the far-infrared torsional spectra in the ground vibrational state (gs). A fit to within the experimental error was achieved using 37 parameters. The large torsional splittings in the ν9 band are attributed to Coriolis-type interactions between the torsional stacks of gs and v9=1 whereas the large shift for the torsion-rotation series with σ=3 in the ν3 band is attributed to Fermi-type interactions between the torsional stacks of the gs and v3=1. The introduction of the Fermi-type interactions causes a considerable change in the leading terms in the torsional Hamiltonian for the gs. These changes are quantitatively explained.  相似文献   

16.
The 3ν17, 3ν37, and 4ν07 hot bands of the ν4 fundamental of C3O2 in the 1580 cm?1 region were analyzed from tunable diode laser spectra and the ground state to ν4 + 2ν07 band at 1644 cm?1 from Fourier transform spectra (FTS). The molecular constants for all of the v4 1 ← 0 bands as well as the intensity of the ν0 + 2ν07 sum band relative to the ν4 fundamental were in agreement with the predictions of the model of Weber and Ford. FTS spectra at 0.05 cm?1 resolution were obtained of the sum and difference bands of ν2 with ν7 in the 750–900 cm?1 region. Sharp Q branches occur for each ν7 state in the sum bands, but only a number of R-branch bandheads and no recognizable Q branches in the difference bands. Assignments of the sum band Q branches through v7 = 6 were made and molecular constants were determined for the ν2 + ν17 ← 0 transition at 819.7 cm?1. The ν7 potential function in the v2 = 1 state was found to have a 1.2 cm?1 barrier with a minimum at α = 4.9°, where 2α is the angular deviation from linearity. The Q-branch positions predicted from the calculated energy levels fit those observed within several cm?1.  相似文献   

17.
The Q branch of the 2ν2 ← ν2 band of 13C2D2 has been recorded with an instrumental resolution of about 0.003 cm?1 using inverse Raman spectroscopy combined with stimulated Raman pumping in order to populate the ν2=1 state. A weak local perturbation evident in the spectrum has been attributed to the effect of an anharmonic resonance between the ν2=2 and ν345=1 Σ+ g, states. To study this interaction, the components of the latter vibrational manifold (Σ+ g, ? g and Δg), together with all the bending states up to (ν4 + ν5)=2 associated with ν3=1, have been characterized through the analysis of their infrared spectra. Both cold and hot bands from states thermally populated at room temperature, ν4, ν5, 2ν4, 2ν5 and ν4 + ν5, have been recorded in the region between 2300 and 3000 cm?1 at an effective resolution of about 0.009 cm?1. A simultaneous analysis of all the assigned transitions has been performed on the basis of a theoretical model which takes into account the rotational and vibrational ?-type resonances within each vibrational manifold, the Darling-Dennison anharmonic resonance between the ν3 + 2ν4 and ν3 + 2ν5 states, and the anharmonic interaction between the 2ν2 and ν3 + ν4 + ν5 states.  相似文献   

18.
The infrared spectrum of short-lived PH2Br has been observed by studying the reaction of P2H4 with gaseous HBr. The a-type fundamental bands ν3 at 812 cm−1 and ν4 at 399 cm−1 have been recorded with a resolution of ca. 5×10−3 cm−1, and their rotational fine structure has been observed. While the ν4 band and its hot band 2ν4−ν4 associated with the P-Br stretching reveal compact qP and qRJ-clusters, the HPBr bending fundamental ν3 shows a widely dispersed structure. A c-type Coriolis interaction of ν3 (Ka) with the unobserved ν6 state (Ka+1) at 795 cm−1, with resonance between Ka=1 and 2, was detected and analyzed. Comparison with results of ab initio calculations revealed in general excellent agreement.  相似文献   

19.
20.
The high-resolution (0.005 cm−1) Fourier transform infrared spectrum of PH3 is recorded and analyzed in the region of the fundamental stretching bands, ν1 and ν3. The ν24 and 2ν4 bands are taken into account also. Experimental transitions are assigned to the ν1, ν3, ν24, and 2ν4 bands with the maximum value of quantum number J equal to 15, 15, 13, and 15, respectively. a1-a2 splittings are observed and described up to the value of quantum number K equal to 10. The analysis of a1/a2 splittings is fulfilled with a Hamiltonian model which takes into account numerous resonance interactions among all the upper vibrational states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号