首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
J. D. Johnson 《高压研究》2013,33(5):277-285
Abstract

We describe an extended standard model that yields the thermodynamics of the ionic contribution for general materials, from the low temperature solid region, through melting, to the ideal gas limit. We use the Debye model for the solid. Melting is determined by the Lindemann formula with standard rules of thumb used to determine density and energy discontinuities. The model interpolates through the liquid regime to the ideal gas assuming that the specific heat drops monotonically from about 3R at melting, to 9R/4 at five times melting, and continuing to 3R/2 at high temperatures. The area under the specific heat curve is constrained in the model to reproduce the correct high temperature entropy. Thus, for a compound the extra contribution from the entropy of mixing forces into the model, in a crude way, the extra specific heat due to dissociation.  相似文献   

2.
《Physics letters. A》1998,239(6):401-405
We study the charged non-relativistic Bose gas interacting with a constant magnetic field but which is otherwise free. The notion of Bose-Einstein condensation for the three-dimensional case is clarified, and we show that although there is no condensation in the sense of a phase transition, there is still a maximum in the specific heat which can be used to define a critical temperature. Although the absence of a phase transition persists for all values of the magnetic field, we show how as the magnetic field is reduced the curves for the specific heat approach the free field curve. For large values of the magnetic field we show that the gas undergoes a “dimensional reduction” and behaves effectively as a one-dimensional gas except at very high temperatures. These general features persist for other spatial dimensions D and we show results for D = 5. Finally we examine the magnetization and the Meissner-Ochsenfeld effect.  相似文献   

3.
An infinite system of coupled differential equations govern the free propagation in a spherical space-time of a gas of massless particles. Following the information-theoretic ideas of E. T. Jaynes, the entropy of the gas is maximized for given energy density, speed, etc., to determine the most probable state of the gas. Assuming this state, the transport equations reduce to a small closed system which is the same for Bosons, Fermions, and distinguishable particles. Because the gas is collisionless, it will usually be nonisotropic, having different pressures in the radial and transverse directions. We assume one restriction motivated by the statistical method and also that the anisotropy measured by the ratio of radial pressure to energy density (equal to 13 for the isotropic case) is a time-independent function of comoving position. This enables one to solve exactly the combined system of general relativistic plus transport equations. The general solution is a homogeneous, isotropic Tolman universe filled with massless quanta.  相似文献   

4.
We introduce a general framework for kinetic BGK models. We assume to be given a system of hyperbolic conservation laws with a family of Lax entropies, and we characterize the BGK models that lead to this system in the hydrodynamic limit, and that are compatible with the whole family of entropies. This is obtained by a new characterization of Maxwellians as entropy minimizers that can take into account the simultaneous minimization problems corresponding to the family of entropies. We deduce a general procedure to construct such BGK models, and we show how classical examples enter the framework. We apply our theory to isentropic gas dynamics and full gas dynamics, and in both cases we obtain new BGK models satisfying all entropy inequalities.  相似文献   

5.
R. Chakrabarti 《Physica A》2008,387(18):4589-4598
We obtain an analytic expression for the specific heat of a system of N rigid rotators exactly in the high temperature limit, and via a perturbative approach in the low temperature limit. We then evaluate the specific heat of a diatomic gas with both translational and rotational degrees of freedom, and conclude that there is a mixing between the translational and rotational degrees of freedom in nonextensive statistics.  相似文献   

6.
We consider the flow of a dilute gas around a macroscopic heavy object. The state of the gas is described by an extended Boltzmann equation where the interactions between the gas molecules and the object are taken into account in computing the rate of change of the distribution function of the gas. We then show that the extended Boltzmann is equivalent to the usual Boltzmann equation, supplemented by boundary conditions imposed on the distribution function at the surface of the object. The remainder of the paper is devoted to a study of the solution of the extended Boltzmann equation in the case that the mean free path of a gas molecule is small compared to some characteristic dimension of the macroscopic object. We show that the Chapman-Enskog normal solution of the ordinary Boltzmann equation is not in general a solution of the extended equation near the surface of the object and must be supplemented by a boundary layer term. We then introduce a projection operator method which allows us to decompose the solution of the extended equation into a normal solution part and a boundary layer part when the gas flow is sufficiently slow. As a specific example of the method we consider the flow around a sphere, and derive the Stokes-Boussinesq form for the frequency-dependent force on the sphere for arbitrary slip coefficient. This derivation is the first one that starts from the Boltzmann equation for a general dilute gas and incorporates the effect of the boundary layer on the drag force.Work supported by the National Science Foundation.  相似文献   

7.
We show that a system of classical continuous hard spheres interacting through a general n body potential satisfying suitable integrability conditions, admits a high temperature-low activity gas phase. We find explicitly a condition on the activity λ and the inverse temperature β which ensures that the Mayer series for the pressure is absolutely convergent uniformly in the volume. Received: 9 September 1999 / Accepted: 4 January 2000  相似文献   

8.
Liu Liyan  Liu Zhipeng  Guo Lina 《Physica A》2008,387(23):5768-5771
We present a stability analysis of the classical ideal gas in a new theory of nonextensive statistics and use this theory to understand the phenomena of negative specific heat in the nonextensive gas. The stability analysis is made on the basis of the second variation of Tsallis entropy. It is shown that the system is thermodynamically unstable if the nonextensive parameter is q>5/3, which is exactly equivalent to the condition of appearance of the negative specific heat.  相似文献   

9.
J. D. Johnson 《高压研究》2013,33(1-6):564-566
Abstract

From statistical mechanics one obtains exactly, relative to zeros of energy and entropy at zero temperature, several terms in the high-temperature expansion for the ionic contribution to the equation of state. By standard thermodynamics we relate the temperature independent terms of the high-temperature expansion for the entropy and internal energy to the -1 and 0 moments, respectively, of the specific heat. If we assume that we understand the solid region, this exact high-temperature information then paradoxically constrains the area and general shape of the specific heat curve in the difficult region above melting but below ideal gas. We outline this reasoning and a model that realizes the constraints.  相似文献   

10.
Large Deviations in Quantum Lattice Systems: One-Phase Region   总被引:1,自引:0,他引:1  
We give large deviation upper bounds, and discuss lower bounds, for the Gibbs-KMS state of a system of quantum spins or an interacting Fermi gas on the lattice. We cover general interactions and general observables, both in the high temperature regime and in dimension one.  相似文献   

11.
We present exact analytic solutions describing the equilibrium states available to a one-dimensional, self-gravitating cloud of gas subject to an external constant gravitational acceleration due to a plane of “stars”. The gas is taken to be heated at a rate proportional to the local gas density and is cooling by both radiation and conduction. The solutions are valid for a thermal conductivity which is an arbitrary function of gas temperature, T, and for radiative cooling which is proportional to the local gas density, ?, multiplied by an arbitrary function of gas pressure, ?. Illustrations of the general spatial dependence are given for the cases where the radiative cooling is proportional to ?2T, and in which the thermal conductivity is either constant, or proportional to Ta(a > 0) in the limits of T tending zero or infinity, respectively.We show that the phenomenon of density “inversion”, reported earlier, is indeed ameliorated by the radiative cooling term, as we had speculated it might be, but is not removed. This indicates that the phenomenon of density inversion is of rugged quality, persisting under a wide variety of conditions and, therefore, of general astrophysical import. We also show that, depending on the ratios of various parameters entering the problem, there is a new phenomenon possible in which the gas temperature has a local minimum at some non-central location so that a wedge of cool gas is in equilibrium surrounded by a hot medium.We have done these calculations as an aid to understanding the complicated behavior of interstellar gas clouds in particular, and the general physical interplay between force balance and energy balance in models of gas clouds more realistic than those heretofore available.  相似文献   

12.
We study the finite size effects on Bose–Einstein condensation (BEC) of an ideal non-relativistic Bose gas in the three-sphere (spatial section of the Einstein universe) and in a partially finite box which is infinite in two of the spatial directions (infinite slab). Using the framework of grand-canonical statistics, we consider the number of particles, the condensate fraction and the specific heat. After obtaining asymptotic expansions for large system size, which are valid throughout the BEC regime, we describe analytically how the thermodynamic limit behaviour is approached. In particular, in the critical region of the BEC transition, we express the chemical potential and the specific heat as simple explicit functions of the temperature, highlighting the effects of finite size. These effects are seen to be different for the two different geometries. We also consider the Bose gas in a one-dimensional box, a system which does not possess BEC in the sense of a phase transition even in the infinite volume limit.  相似文献   

13.
《Physica A》2005,356(1):83-87
We describe a quantitative model for air-driven fluidization in a vertically vibrated granular system and use experimental results and simulations to evaluate it. The model involves a mechanism for vibrationally induced interstitial gas flow [L.I. Reyes, I. Sánchez, G. Gutiérrez, Physica A, cond-mat/0502376, in press] that can generate fluid-like states that produce density-dependent segregation of large objects, through a buoyancy force. A criterion for the onset of fluidization analogous to that of a gas-fluidized static bed is used. We calculate the vertical displacement of a large sphere occurring within one period of oscillation, in specific parts of the cycle where the granular system behaves like a regular fluid.  相似文献   

14.
We summarize recent developments in the field of higher dimensional bosonization made by Setlur and collaborators and propose a general formula for the field operator in terms of currents and densities in one dimension using a new ingredient known as a ‘singular complex number’. Using this formalism, we compute the Green function of the homogeneous electron gas in one spatial dimension with short-range interaction leading to the Luttinger liquid and also with long-range interactions that lead to a Wigner crystal whose momentum distribution computed recently exhibits essential singularities. We generalize the formalism to finite temperature by combining with the author’s hydrodynamic approach. The one-particle Green function of this system with essential singularities cannot be easily computed using the traditional approach to bosonization which involves the introduction of momentum cutoffs, hence the more general approach of the present formalism is proposed as a suitable alternative.   相似文献   

15.
本文对气体系统内的碰壁分子的平均速率和平均能量为会么会大于系统内分子的平均速率和平均能量进行了定性解释,并求出了这两类不同平均值之间的一般关系,最后针对经典理想气体算出了定量结构。  相似文献   

16.
In recent years a number of new techniques have become available in nonequilibrium statistical mechanics, all derived from dynamical system theory, especially from the thermodynamic formalism of Ruelle. We focus here on periodic orbit theory, and we compare it with a novel approach proposed by Evans, Cohen, and Morriss, and developed further by Gallavotti and Cohen. We argue that the two approaches based on such theories are equivalent for systems of many particles if the underlying dynamics is similar to that of Anosov systems, and that such equivalence should remain in more general situations. We extend our previous explanation of irreversibility in the thermostatted Lorentz gas toN-particle diffusion and shearing systems.  相似文献   

17.
We demonstrate that the radiation-induced "zero-resistance state" observed in a two-dimensional electron gas is a result of the nontrivial structure of the density of states of the systems and the photon-assisted transport. A toy model of a quantum tunneling junction with oscillatory density of states in leads catches most of the important features of the experiments. We present a generalized Kubo-Greenwood conductivity formula for the photon-assisted transport in a general system and show essentially the same nature of the transport anomaly in a uniform system.  相似文献   

18.
This paper deals with the transmission of a soliton in a random medium described by a randomly perturbed Korteweg–de Vries equation. Different kinds of perturbations are addressed, depending on their specific time or position dependences, with or without damping. We derive effective evolution equations for the soliton parameter by applying a perturbation theory of the inverse scattering transform and limit theorems of stochastic calculus. Original results are derived that are very different compared to a randomly perturbed Nonlinear Schrödinger equation. First the emission of a soliton gas is proved to be a very general feature. Second some perturbations are shown to involve a speeding-up of the soliton, instead of the decay that is usually observed in random media.  相似文献   

19.
The consistency of a nonlinear system's response to a repeated complex waveform drive signal is an important consideration in classical and quantum systems as diverse as lasers, neuronal networks, and manufacturing plants. We show from a consideration of different characteristic waveforms that there is typically an optimal drive amplitude for the most consistent response; internal noise sources dominate for small amplitude driving while deterministic system nonlinearity reduces consistency for large amplitudes. We test this general concept and its measurement experimentally and numerically on the specific example of a laser system.  相似文献   

20.
Using semiclassical method, Bose–Einstein condensation (BEC) of a relativistic ideal Bose gas (RIBG) with and without antibosons in the three-dimensional (3D) harmonic potential is investigated. Analytical expressions for the BEC transition temperature, condensate fraction, specific heat and entropy of the system are obtained. Relativistic effects on the properties of the system are discussed and it is found that the relativistic effect decreases the transition temperature Tc but enlarges the gap of specific heat at Tc. We also study the influence of antibosons on a RIBG. Comparing with the system without antibosons, the system with antibosons has a higher transition temperature and a lower Helmholtz free energy. It implies that the system with antibosons is more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号