首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Disease spreading in structured scale-free networks   总被引:2,自引:0,他引:2  
We study the spreading of a disease on top of structured scale-free networks recently introduced. By means of numerical simulations we analyze the SIS and the SIR models. Our results show that when the connectivity fluctuations of the network are unbounded whether the epidemic threshold exists strongly depends on the initial density of infected individuals and the type of epidemiological model considered. Analytical arguments are provided in order to account for the observed behavior. We conclude that the peculiar topological features of this network and the absence of small-world properties determine the dynamics of epidemic spreading. Received 16 October 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: yamir@ictp.trieste.it  相似文献   

2.
Measurements and data analysis have proved very effective in the study of the Internet's physical fabric and have shown heterogeneities and statistical fluctuations extending over several orders of magnitude. Here we focus on the relationship between the Round-Trip-Time (RTT) and the geographical distance. We define dimensionless variables that contain information on the quality of Internet connections finding that their probability distributions are characterized by a slow power-law decay signalling the presence of scale-free features. These results point out the extreme heterogeneity of Internet delay since the transmission speed between different points of the network exhibits very large fluctuations. The associated scaling exponents appear to have fairly stable values in different data sets and thus define an invariant characteristic of the Internet that might be used in the future as a benchmark of the overall state of “health” of the Internet. Received 25 January 2003 Published online 7 May 2003  相似文献   

3.
It has been shown over the last few years that the dynamics close to the glass transition is strongly heterogeneous, both by measuring the diffusion coefficient of tagged particles or by NMR studies. Recent experiments have also demonstrated that the glass transition temperature of thin polymer films can be shifted as compared to the same polymer in the bulk. We propose here first a thermodynamical model for van der Waals liquids, which accounts for experimental results regarding the bulk modulus of polymer melts and the evolution of the density with temperature. This model allows us to describe the density fluctuations in such van der Waals liquids. Then, by considering the thermally induced density fluctuations in the bulk, we propose that the 3D glass transition is controlled by the percolation of small domains of slow dynamics, which allows to explain the heterogeneous dynamics close to T g. We show then that these domains percolate at a lower temperature in the quasi-2D case of thin suspended polymer films and we calculate the corresponding glass transition temperature reduction, in quantitative agreement with experimental results of Jones and co-workers. In the case of strongly adsorbed films, we show that the strong adsorption amounts to enhance the slow domains percolation. This effect leads to 1) a broadening of the glass transition and 2) an increase of T g in quantitative agreement with experimental results. For both strongly and weakly adsorbed films, the shift in T g is given by a power law, the exponent being the inverse of that of the correlation length of 3D percolation. Received 21 March 2000 and Received in final form 4 December 2000  相似文献   

4.
The epidemic spread and immunizations in geographically embedded scale-free (SF) and Watts-Strogatz (WS) networks are numerically investigated. We make a realistic assumption that it takes time which we call the detection time, for a vertex to be identified as infected, and implement two different immunization strategies: one is based on connection neighbors (CN) of the infected vertex with the exact information of the network structure utilized and the other is based on spatial neighbors (SN) with only geographical distances taken into account. We find that the decrease of the detection time is crucial for a successful immunization in general. Simulation results show that for both SF networks and WS networks, the SN strategy always performs better than the CN strategy, especially for more heterogeneous SF networks at long detection time. The observation is verified by checking the number of the infected nodes being immunized. We found that in geographical space, the distance preferences in the network construction process and the geographically decaying infection rate are key factors that make the SN immunization strategy outperforms the CN strategy. It indicates that even in the absence of the full knowledge of network connectivity we can still stop the epidemic spread efficiently only by using geographical information as in the SN strategy, which may have potential applications for preventing the real epidemic spread.  相似文献   

5.
Applying Gibb's geometrical methods to the thermodynamics of H-plasmas we explore the landscape of the free energy as a function of the degrees of ionization and dissociation. Several approximations for the free energy are discussed. We show that in the region of partial ionization/dissociation the quantum Debye-Hückel approximation (QDHA) yields a rather good but still simple representation which allows to include magnetic field and fluctuation effects. By using relations of Onsager-Landau-type the probability of fluctuations and ionization/dissociation processes are described. We show that the degrees of ionization/dissociation are probabilistic quantities which are subject to a relatively large dispersion. Magnetic field effects are studied. Received 10 September 2002 / Received in final form 26 November 2002 Published online 11 February 2003  相似文献   

6.
7.
Systems of globally coupled logistic maps (GCLM) can display complex collective behaviour characterized by the formation of synchronous clusters. In the dynamical clustering regime, such systems possess a large number of coexisting attractors and might be viewed as dynamical glasses. Glass properties of GCLM in the thermodynamical limit of large system sizes N are investigated. Replicas, representing orbits that start from various initial conditions, are introduced and distributions of their overlaps are numerically determined. We show that for fixed-field ensembles of initial conditions all attractors of the system become identical in the thermodynamical limit up to variations of order 1/, and thus replica symmetry is recovered for N→∞. In contrast to this, when fluctuating-field ensembles of initial conditions are chosen, replica symmetry remains broken in the thermodynamical limit. Received 9 July 2001  相似文献   

8.
We present generalized dynamical models describing the sharing of information, and the corresponding herd behavior, in a population based on the recent model proposed by Eguıluz and Zimmermann (EZ) [Phys. Rev. Lett. 85, 5659 (2000)]. The EZ model, which is a dynamical version of the herd formation model of Cont and Bouchaud (CB), gives a reasonable model for the formation of clusters of agents and for actions taken by clusters of agents. Both the EZ and CB models give a cluster size distribution characterized by a power law with an exponent -5/2. By introducing a size-dependent probability for dissociation of a cluster of agents, we show that the exponent characterizing the cluster size distribution becomes model-dependent and non-universal, with an exponential cutoff for large cluster sizes. The actions taken by the clusters of agents generate the price returns, the distribution of which is also characterized by a model-dependent exponent. When a size-dependent transaction rate is introduced instead of a size-dependent dissociation rate, it is found that the distribution of price returns is characterized by a model-dependent exponent while the exponent for the cluster-size distribution remains unchanged. The resulting systems provide simplified models of a financial market and yield power law behaviour with an easily tunable exponent. Received 31 December 2001  相似文献   

9.
Thermal noise of a mirror can be reduced by cold damping. The displacement is measured with a high-finesse cavity and controlled with the radiation pressure of a modulated light beam. We establish the general quantum limits of noise in cold damping mechanisms and we show that the optomechanical system allows to reach these limits. Displacement noise can be arbitrarily reduced in a narrow frequency band. In a wide-band analysis we show that thermal fluctuations are reduced as with classical damping whereas quantum zero-point fluctuations are left unchanged. The only limit of cold damping is then due to zero-point energy of the mirror. Received 1st August 2001 and Received in final form 12 October 2001  相似文献   

10.
We investigate the behavior of the complex shear modulus of a series of elastomers including mono-domain and poly-domain liquid crystal samples, and a non-mesomorphic sample. We find that the dynamics of the glass transition are strongly modified by the nematic order. This result explains why the truly elastic response of liquid crystal elastomers can only be observed in the isotropic phase at very high temperatures and at very low frequencies. Between the elastic regime and the glassy state, the elastomers have a visco-elastic regime, which is characterized by a Rouse-like behavior for mono-domain and poly-domain samples, and by a Zimm-like behavior for the non-mesomorphic sample. We also show that the mono-domain sample exhibits marked anisotropy of the shear-modulus G . This anisotropy, which is observed for the first time, is a function of frequency and is inverted between low and high frequencies, due to relaxation effects of the orientational order. Received 28 January 2000 and Received in final form 16 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号