首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
贺凯芬 《物理学报》1986,35(10):1330-1337
本文讨论了两种不同类型的模式耦合的一个哈密顿系统。在无耦合时,其中一类模式是描写相干三波相互作用的非线性振子,组成可积的哈密顿量。另一类模式是不变量。在耦合的一级近似下,我们证明了耦合将在相空间中引入共振区,共振条件与振子固有的线性频率、频率失谐以及振子振幅的非线性变化的谐波频率有关。 关键词:  相似文献   

2.
We show that the wave function of a coupled quantum system may factorize for certain coupling operators, resulting in wave functions and effective nonlinear Hamiltonians for the subsystems. Systems of coupled harmonic oscillators with discrete or continuous spectra are considered, where all degrees of freedom move in time-dependent coherent Glauber states.We present the general formalism and study two examples in detail. The problem of radiation damping results under drastic assumptions in exponentially damped harmonic motion, obeying a nonlinear Schrödinger equation. In the second example, a different type of coupling is studied which yields inverse power law damping.  相似文献   

3.
The paper deals with a non-linear model of the convective heat exchange. By transforming Obukhov's model equations it is shown that it is possible to replace the time evolution of a dynamic system by the system of two coupled non-linear oscillators with exciting forces. This exciting force is a linear function of the temperature deviation from the linear course. From the presented results it is clear that there exist coherent regimes which are characterized by subharmonic frequencies of different orders.  相似文献   

4.
We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case.  相似文献   

5.
Parametric excitation or pumping is an effective method to create large oscillations by periodically altering a physical parameter of the governing dynamics. Precisely tuned pumping frequencies can lead to exponentially growing oscillations limited only by nonlinear effects like axial stretching of transversely vibrating string. It is demonstrated that a tuned passive dynamical system amplifies the otherwise limited transverse vibrations amplitudes of a nonlinear string considerably and thus increasing the selectivity of the system. This effect becomes more noticeable for shorter wavelengths where nonlinear stretching limits the obtainable vibration amplitudes severely. The present work analyses a passive dynamical system connected to one end of a taught string which parametrically couples its axial motion to transverse vibration. Analysis shows that a specific selection of parameters can reduce the limiting effect of nonlinear stretching thus allowing one to excite high-order modes with small external forces. The result can possibly affect other disciplines where effective parametric amplification is necessary.  相似文献   

6.
We consider a variant of two coupled Van der Pol oscillators with both attractive and repulsive mean-field interactions. In the presence of attractive coupling, the system is in the complete synchrony, while repulsive coupling shows anti-synchronization state leading to suppression of oscillations with increasing interaction strength. The coupled system with both attractive and repulsive interactions shows competitive tendencies of being complete synchronization and anti-synchronization resulting in the stabilization of the fixed point. We have also studied the effect of the damping coefficient of the VdP oscillator on the nature of the transition from oscillatory to a steady-state. These oscillators stabilize to unstable equilibrium point or coupling dependent inhomogeneous steady state via second or first-order transitions respectively depending upon the damping coefficient and coupling strength. These transitions are analyzed in the parameter plane by analytical and numerical studies of the two coupled Van der Pol oscillators.  相似文献   

7.
本文进一步研究了以前提出的哈密顿系统,说明非线性振子的实振幅具有的极限圈运动,由于另一类模式耦合扰动,引起振子的线性频率重新激发,而失稳到二维环。据此,分析了有关的实验及理论研究,推断流体力学矩方程之间的耦合,可能在显示Ruelle-Takens途径上起了关键作用,同时猜想向湍流转变的图象是轨迹被吸引在两个二维环上不断调节的运动。  相似文献   

8.
Dissipation of mechanical vibration energy at contact interfaces in a structure, commonly referred to as interface damping, is an important source of vibration damping in built-up structures and its modeling is the focus of the present study. The approach taken uses interface forces which are linearly dependent on the relative vibration displacements at the contact interfaces.The main objective is to demonstrate a straightforward technique for simulation of interface damping in built-up structures using FE modeling and simple, distributed, damping forces localized to interfaces where the damping occurs.As an illustration of the resulting damping the dissipated power is used for evaluation purposes. This is calculated from surface integrals over the contact interfaces and allows for explicit assessment of the effect of simulated interface forces for different cases and frequencies. The resulting loss factor at resonance is explicitly evaluated and, using linear simulations, it is demonstrated that high damping levels may arise even though the displacement differences between contacting surfaces at damped interfaces may be very small.  相似文献   

9.
The analysis is carried out of the response of the center of gravity (dipole moment) of the distribution of noninteracting thermalized nonlinear oscillators to a sinusoidal driving force. Heat bath coupling is modeled by damping and noise. The driving is weak, but the frequency is resonant, so that there is a nonlinear resonance in the phase space. The response has a linear part that can be obtained from the perturbation analysis and a small nonlinear correction that is specific for the resonant structure.  相似文献   

10.
We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean field are observed with the rate depending on the ensemble size. When a small periodic force acts on the ensemble, the linear response of the system has a maximum at a certain system size, similar to the stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different types of noisy oscillators and for different ensembles---lattices with nearest neighbors coupling and globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.  相似文献   

11.
分数阶van der Pol振子的超谐共振   总被引:1,自引:0,他引:1       下载免费PDF全文
韦鹏  申永军  杨绍普 《物理学报》2014,63(1):10503-010503
以含分数阶微分项的van der Pol振子为对象,研究其超谐共振时的动力学特性.首先,通过平均法得到了系统的一阶近似解,提出了超谐共振时等效线性阻尼和等效线性刚度的概念,研究了分数阶微分项的系数和阶次以等效线性阻尼和等效线性刚度的形式对系统动力学特性的影响.随后,建立了超谐共振时定常解的幅频曲线的解析表达式,得到了超谐共振周期响应的稳定性判断准则并提出等效非线性阻尼和非线性稳定性条件参数的概念.最后,通过数值仿真比较了分数阶与整数阶系统的幅频曲线,分析了分数阶微分项的系数和阶次对响应幅值、幅频曲线以及系统稳定性的影响.  相似文献   

12.
We analyze the stability of synchronized periodic motion for two coupled oscillators, representing two interacting oscillation modes in a nonlinear vibrating beam. The main oscillation mode is governed by the forced Duffing equation, while the other mode is linear. By means of the multiple-scale approach, the system is studied in two situations: an open-loop configuration, where the excitation is an external force, and a closed-loop configuration, where the system is fed back with an excitation obtained from the oscillation itself. The latter is relevant to the functioning of time-keeping micromechanical devices. While the accessible amplitudes and frequencies of stationary oscillations are identical in the two situations, their stability properties are substantially different. Emphasis is put on resonant oscillations, where energy transfer between the two coupled modes is maximized and, consequently, the strong interdependence between frequency and amplitude caused by nonlinearity is largely suppressed.  相似文献   

13.
Dynamics of strongly nonlinear systems can in many cases be modelled by bilinear oscillators, which are the oscillators whose springs have different stiffnesses in compression and tension. This underpins the analysis of a wide range of phenomena, from oscillations of fragmented structures, connections and mooring lines to deformation of geological media. Single bilinear oscillators were studied previously and the presence of multiple resonances both super- and sub-harmonic was found. Less attention was paid to systems of multiple bilinear oscillators that describe many natural and engineering processes such as for example the behaviour of fragmented solids. Here we fill this gap concentrating on the simplest case – 1D symmetrical chains of bilinear oscillators. We show that the presence and structure of resonances in a symmetric chain of bilinear oscillators with fixed ends depends upon the number of oscillating masses. Two elementary chains act as the basic ones: a single mass bilinear chain (a mass connected to the fixed points by two bilinear springs) that behaves as a linear oscillator with a single resonance and a two mass chain that is a coupled bilinear oscillator (two masses connected by three bilinear springs). The latter has multiple resonances. We demonstrate that longer chains either do not have resonances or get decomposed, in the resonance, into either the single mass or two mass elementary chains with stationary masses in between. The resonance frequencies are inherited from the basic chains of decomposition. We show that if the number of masses is odd the chain can be decomposed into the single mass bilinear chains separated by stationary masses. It then inherits the resonances of the single mass bilinear chain. The chains with the number of masses minus 2 divisible by 3 can be decomposed into the two mass bilinear chains separated by stationary masses and inherit the resonances of the two mass chains. The chains whose lengths satisfy both criteria (such as chains with 5, 11, 17 … masses) allow both types of resonances.  相似文献   

14.
We investigate the dynamics of 2DOF linear subsystem with close frequencies with attached nonlinear energy sink (NES). In this system, simultaneous targeted energy transfer from both linear oscillators to the NES is possible. It was demonstrated that the process of the TET can be analytically described as transient beats of relaxation—like motion arising due to the internal resonance. Contrary to previously studied models, the approach based on Hamiltonian structure of the system (study of the periodic orbits in the absence of the damping) fails to provide insight into the TET process. The reason of that is large number of secondary resonances activated through interaction between two primary 1:1 resonances. In the damped system these resonances are eliminated and then averaging—based approach is applicable. It was shown by the Hilbert Vibration Decomposition (HVD) that in the damped case there is a single significant component of the response regarded to the 1:1:1 resonance. Analytical model was verified numerically and a fairly good correspondence was observed.  相似文献   

15.
The collective behavior of overdamped nonlinear noise-driven oscillators coupled via mean field is investigated numerically. When a coupling constant is increased, a transition in the dynamics of the mean field is observed. This transition scales with the number of oscillators and disappears when this number tends to infinity. Analytical arguments explaining the observed scaling are presented.  相似文献   

16.
The order parameter dynamics of a mean-field model is frequently investigated in macroscopic cumulant dynamics, from which a bifurcation can be predicted qualitatively. In this Letter, for quantitatively investigating the long-time order parameter dynamics, a semi-analytic method is proposed based on approximate nonlinear Fokker-Planck equations. Applying the new method to the mean-field model of periodically driven overdamped bistable oscillators with colored noise, we exhibit the bifurcation behavior and the nonlinear stochastic resonance of the order parameter by tuning noise intensity or coupling coefficient, and the accuracy of the new method are verified by direct simulation. Our observations disclose some new properties about the order parameter dynamics of the mean-field model. For example, the periodic signal shifts the critical coupling coefficient to a larger value, while the nonzero correlation time of the colored noise shifts it to a lower value. Our observation also discloses that there is no quantitatively corresponding relation between the resonant peak and the critical bifurcation parameter of the Gaussian moment system.  相似文献   

17.
《Physics letters. A》2019,383(17):2056-2060
The collective dynamics of a network of nonlinear oscillators can be represented in terms of activity level of the network. We have studied a universal transition from activity to inactivity in a globally coupled network of identical oscillators. We consider mixed coupling, where some of the network elements interact through the similar variables while others with dissimilar variables. The coupling strength at which the network become inactive is inversely proportional to the fraction of oscillators coupled through dissimilar variables. Results are presented for the network of various globally coupled limit-cycle oscillators such as Stuart-Landau oscillators, MacArthur prey-predator model as well as for the chaotic Rössller oscillators. The analytical condition for the onset of inactivity in the system is calculated using linear stability analysis which is found to be in good agreement with the numerical results.  相似文献   

18.
The amplitude death phenomenon has been experimentally observed with a pair of thermo-optical oscillators linearly coupled by heat transfer. A parametric analysis has been done and compared with numerical simulations of a time delayed model. The role of the coupling strength is also discussed from experimental and numerical results.  相似文献   

19.
We analytically and numerically show that the Hillery-Zubairy’s entanglement criterion is satisfied both below and above the threshold of coupled non-degenerate optical parametric oscillators (NOPOs) with strong nonlinear gain saturation and dissipative linear coupling. We investigated two cases: for large pump mode dissipation, below-threshold entanglement is possible only when the parametric interaction has an enough detuning among the signal, idler, and pump photon modes. On the other hand, for a large dissipative coupling, below-threshold entanglement is possible even when there is no detuning in the parametric interaction. In both cases, a non-Gaussian state entanglement criterion is satisfied even at the threshold. Recent progress in nano-photonic devices might make it possible to experimentally demonstrate this phase transition in a coherent XY machine with quantum correlations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号