首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report true left-handed (LH) behavior in a composite metamaterial consisting of a periodically arranged split ring resonator (SRR) and wire structures. We demonstrate the magnetic resonance of the SRR structure by comparing the transmission spectra of SRRs with those of closed SRRs. We have confirmed experimentally that the effective plasma frequency of the LH material composed of SRRs and wires is lower than the plasma frequency of the wires. A well-defined LH transmission band with a peak value of -1.2 dB (-0.3 dB/cm) was obtained. The experimental results agree extremely well with the theoretical calculations.  相似文献   

2.
通过实验及仿真研究了三角谐振环组合新型六边形谐振环金属线复合周期结构左手材料.仿真研究了以金属铜三角开口谐振环(SRRs)为基本单元的周期结构负磁导率材料,与闭口环(CSRRs)结果对比发现三角开口谐振环能产生很好的谐振效果即能产生负磁导率,并且多层单元仿真发现多个谐振环耦合能提高谐振频率并加宽谐振频段;设计、制作并实验和仿真研究了三角开口环为基本单元的六边形谐振环金属线复合周期结构左手材料,仿真结果在98GHz附近出现良好负折射效应,实验验证在93—108 GHz出现良好负折射效应,与仿真结果具有良好的一致性.该研究对新型周期结构左手材料的研究、设计和研制具有重要的科学意义和应用前景. 关键词: 左手材料 三角环组成的六边形谐振环 负折射  相似文献   

3.
通过实验及仿真研究了基于矩形谐振环的新型三角形和三矩形开口谐振环金属线复合周期结构左手材料.仿真研究了以金属铜三角谐振环和三矩形谐振环(SRRs)为基本单元的周期结构负磁导率材料,结果显示两种谐振环均能产生很好的谐振效果,即能产生负磁导率;设计、制作并实验和仿真研究了三角谐振环和三矩形谐振环金属线复合周期结构左手材料,实验结果分别在9.5—13.3GHz和9.8—12.5GHz出现良好的负折射效应,与仿真结果具有较好的一致性.该研究对新型周期结构左手材料的研究、设计和研制具有重要的科学意义和应用前景. 关键词: 左手材料 负折射 三角形谐振环 三矩形谐振环  相似文献   

4.
Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance.  相似文献   

5.
非均匀缺陷环对微波左手材料的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
罗春荣  康雷  赵乾  付全红  宋娟  赵晓鹏 《物理学报》2005,54(4):1607-1612
以金属铜六边形开口谐振环(SRRs)与金属铜线的组合为结构单元,研究了三维左手材料中的 缺陷效应. 利用电路板刻蚀技术制备了左手材料样品,采用波导法测量了SRRs构成的点缺陷 和线缺陷对左手材料X波段(8—12 GHz)微波透射行为的影响. 实验结果表明,引入不同尺 寸SRRs构成的点缺陷,材料谐振峰强度下降,最多达6 dB,相当于原来的186%,谐振频率 移动,通频带宽在630—720 MHz范围变化;引入不同尺寸SRRs构成三种取向的线缺陷时,材 料谐振峰强度下降,最多达11 dB,相当于原来的34 关键词: 左手材料 缺陷效应  相似文献   

6.
戴雨涵  陈小浪  赵强  张继华  陈宏伟  杨传仁 《物理学报》2013,62(6):64101-064101
开口谐振环(SRRs) 结构可以激励磁谐振, 实现负的磁导率. 提出在SRRs两环间隙内引入相对交错的金属短线, 并研究了金属短线对谐振频率的影响. 结果表明: 随着金属短线数目的增多, 谐振频率显著降低, 同时金属短线的结构参数如长度、宽度及间距也会对谐振频率产生影响. 最后验证了金属短线的引入对减小器件尺寸有明显作用, 且不因介质基底的存在而受到影响. 新型磁谐振单元可为今后超材料的设计及实际应用提供新的参考. 关键词: 左手材料 开口谐振环 太赫兹 小型化  相似文献   

7.
左手材料的反射特性与负折射率行为   总被引:3,自引:0,他引:3       下载免费PDF全文
郑晴  赵晓鹏  付全红  赵乾  康雷  李明明 《物理学报》2005,54(12):5683-5687
利用平板波导法研究了不同入射角度下周期排列开口谐振环负磁导率材料、周期排列金属杆负介电常数材料以及左手材料微波反射特性,并利用劈尖法研究了左手材料的负折射特性.实验结果表明:负磁导率材料反射率曲线形成反射峰,其对应的反射峰频率与材料的谐振频率一致;负介电常数材料反射率接近0dB;左手材料出现单个反射较小的反射峰,其峰值反射率随入射角度的增大而变大,即反射能力增强,且反射峰与透射峰有相对频移.劈尖法测量还表明,左手材料在9800MHz频率附近出现负折射现象,其折射率n为-0.796. 关键词: 左手材料 反射 负折射率  相似文献   

8.
孙明昭  张淳民  宋晓平 《物理学报》2010,59(8):5444-5449
通过实验及仿真研究了基于C环的新型八边形开口谐振环金属线复合周期结构左手材料.以金属铜八边形谐振环(SRRs)为基本单元的周期结构负磁导率材料,与闭口环(CSRRs)结果对比发现八边形谐振环能产生很好的谐振效果即能产生负磁导率;复合结构仿真结果显示,八边形谐振环金属线复合结构实现负折射具有可行性.设计、制作并实验和仿真研究了两种尺寸的八边形谐振环金属线复合周期结构左手材料,实验结果显示,分别在9.8—15GHz和9.5—15GHz出现良好负折射效应,表明小尺寸材料负折射频段较宽但整体能量透过率较小.通过与尺寸相近的传统C环样品实验对比发现八边形样品损耗较大,但其负折射区域能量分布比例较大,具有一定的优越性.该研究对新型周期结构左手材料的研究、设计和研制具有重要的科学意义,在国防、通信等领域也具有广阔的应用前景.  相似文献   

9.
We present theoretical and experimental results for a new design of highly symmetric, multigap split-ring resonators (SRRs), as well as for left-handed materials of a broad and high transmittance left-handed band, achieved by combining those symmetric SRRs with continuous wires. Studying in detail, both theoretically and experimentally, our proposed symmetric SRRs, we proved that they avoid the electric field excitation of the magnetic SRR resonance; thus they are appropriate for the creation of two-dimensional and three-dimensional left-handed materials. Finally, we propose critical design rules for the development of low-loss and broad-band left-handed materials.  相似文献   

10.
We report on the fabrication, through photolithography techniques, and the detailed characterization, through direct transmission measurements, of a periodic system composed of five layers of photolithographically aligned micrometer-sized Ag split-ring resonators (SRRs). The measured transmission spectra for propagation perpendicular to the SRRs plane show a gap around 6 THz for one of the two possible polarizations of the incident electric field; this indicates the existence of a magnetic resonance, which is verified by detailed theoretical analysis. To our knowledge this is the first time that a system of more than one layer of micrometer-sized SRRs has been fabricated. The measured optical spectra of the Ag microstructure are in very good agreement with the corresponding theoretical calculations.  相似文献   

11.
We use simple transmission line models with lumped elements of inductance and capacitance to interpret optical transmission and reflection spectra of cut wires and cut-wire pairs in the near infrared region. The numerical values of the elements are obtained by fitting experimental or numerical simulated reflectance and transmittance spectra. The scattering parameters and the retrieved effective material parameters calculated from the transmission line models show good agreements with those obtained from experiments or numerical simulations. This indicates that transmission line theory is a powerful tool for designing and analyzing metamaterials at optical frequencies. PACS 41.20.Jb; 78.67.-n; 78.66.Sg  相似文献   

12.
In this study we provide experimental methods to identify the magnetic resonance of split ring resonantors (SRR) at the microwave frequency regime. Transmission measurements were performed on both single SRR unit cell and periodic arrays of SRRs. The magnetic response of the SRR structure was demonstrated by comparing the transmission spectra of SRRs with closed ring resonators (CRR). Effects of the changes in the effective dielectric constant of the SRR medium on the band-gaps of SRR are investigated experimentally. SRRs not only exhibit a magnetic resonance band gap but also a band gap due to the electric resonance. Finally, we present the effect of electric coupling to the magnetic resonance of bianisotropic SRRs by utilizing SRRs with different orientations, and incident electromagnetic wave polarizations.  相似文献   

13.
The design of the metamaterial that can exhibit negative refraction at two frequency bands is presented. The components of this metamaterial are cut wire pairs and continuous wires. The cut wire pairs structure in our sample can achieve the magnetic resonance at two frequency bands by appropriately designing the cut wire dimension. Through numerical simulation, the transmission property of the proposed dual band negative index metamaterial is investigated and its result shows that with the introduction of continuous wires, the stop bands for cut wire pairs (permeability μ<0) and the frequency band for continuous wires (permittivity ε<0) components would overlap and lead to the appearance of pass bands near the two magnetic resonance frequency bands. Its electromagnetic properties are then retrieved to demonstrate that the dual band left-hand behavior can be obtained in our sample structure. It is believed that our approach will be effective to make this kind of dual band negative refractive metamaterial based on the multiple magnetic resonances work at optical frequency.  相似文献   

14.
二维负磁导率材料中的缺陷效应   总被引:9,自引:1,他引:8       下载免费PDF全文
康雷  赵乾  赵晓鹏 《物理学报》2004,53(10):3379-3383
研究了以金属铜六边形开口谐振环为基元的二维负磁导率材料的缺陷效应.利用电路板刻蚀 技术制备了二维负磁导率材料样品.采用波导法测量了点缺陷和线缺陷对二维负磁导率材料X 波段(8—12GHz)微波透射行为的影响.实验发现,无缺陷的二维负磁导率材料样品存在一个 谐振频率,在稍大于该谐振频率的极窄区域内表现为负磁导率.点缺陷和线缺陷SRR的引入导 致材料主谐振峰的强度下降、谐振频率发生移动,品质因数Q显著下降.缺陷的存在破坏 了材料的周期性结构,从而引起其谐振峰的谐振强度和谐振频率发生变化.缺陷效应的研究 不 关键词: 负磁导率 缺陷效应 开口谐振环  相似文献   

15.
We report the true left-handed transmission of a composite metamaterial (CMM) consisting of periodically stacked split-ring resonator (SRR) and wire elements. The negative permeability (μ < 0) gap is demonstrated explicitly by comparing SRR and closed-ring resonator structures. We confirm experimentally that the plasma cut-off frequency of the CMM is determined by the combined dielectric response of SRR and wire elements, and it is much lower than that of the wire-only medium. This is crucial to identify the left-handed transmission bands of the CMM. We further investigate the effect of intralayer and interlayer disorder on the transmission spectrum of CMM arising from misaligned fabrication and stacking of the SRR layers. We found that the intralayer disorder affects the μ < 0 gap of SRRs and the left-handed transmission band of CMM significantly, whereas the SRR transmission is rather immune to interlayer disorder.  相似文献   

16.
Yuting Zhang 《中国物理 B》2022,31(6):68702-068702
We numerically demonstrate a photo-excited plasmon-induced transparency (PIT) effect in hybrid terahertz (THz) metamaterials. The proposed metamaterials are regular arrays of hybrid unit cells composed of a metallic cut wire and four metallic split-ring resonators (SRRs) whose gaps are filled with photosensitive semiconductor gallium arsenide (GaAs) patches. We simulate the PIT effect controlled by external infrared light intensity to change the conductivity of GaAs. In the absence of photo excitation, the conductivity of GaAs is 0, thus the SRR gaps are disconnected, and the PIT effect is not observed since the dark resonator (supported by the hybrid SRRs) cannot be stimulated. When the conductivity of GaAs is increased via photo excitation, the conductivity of GaAs can increase rapidly from 0 S/m to 1×106 S/m and GaAs can connect the metal aluminum SRR gaps, and the dark resonator is excited through coupling with the bright resonator (supported by the cut wire), which leads to the PIT effect. Therefore, the PIT effect can be dynamically tuned between the on and off states by controlling the intensity of the external infrared light. We also discuss couplings between one bright mode (CW) and several dark modes (SRRs) with different sizes. The interference analytically described by the coupled Lorentz oscillator model elucidates the coupling mechanism between one bright mode and two dark modes. The phenomenon can be considered the result of linear superposition of the coupling between the bright mode and each dark mode. The proposed metamaterials are promising for application in the fields of THz communications, optical storage, optical display, and imaging.  相似文献   

17.
谐振频率可调的环状开口谐振器结构及其效应   总被引:3,自引:0,他引:3       下载免费PDF全文
张富利  赵晓鹏 《物理学报》2007,56(8):4661-4667
理论和实验研究表明,开口谐振环(SRRs)中可以激励磁谐振从而实现负磁导率.通过在SRRs结构中引入与其开口边平行的金属短杆设计并制备了新的磁谐振单元,采用波导法系统研究了短杆对SRRs和左手材料的微波透射特性以及左手效应的影响.实验和数值模拟表明:金属短杆和SRRs开口边形成附加电容,导致SRRs开口电容增大从而引起谐振频率降低.随短杆长度l和短杆与SRRs间距d的增大,SRRs谐振频率也随之减小和增加.短杆的加入不影响SRRs的负磁导率特性,改变短杆与SRRs间距d< 关键词: 开口谐振环 金属短杆 调控 左手材料  相似文献   

18.
We numerically and experimentally investigate a planar metamaterial that is composed of connected cut-wire pairs and continuous wires operating at 21 GHz. The characterization was performed by using the effective medium theory. The existence of negative refraction is concluded from the transmission data of four structures: cut-wire pairs, shorted cut-wire pairs, composite metamaterial, and shorted composite metamaterial.  相似文献   

19.
Azad AK  Dai J  Zhang W 《Optics letters》2006,31(5):634-636
We present a terahertz time-domain spectroscopy study of the transmission properties of planar composite media made from subwavelength double split-ring resonators (SRRs). The measured amplitude transmission spectra reveal a resonance near 0.5 THz, the central frequency of most ultrafast terahertz systems, for one SRR orientation in normal-incidence geometry. This resonance is attributed to the effect of electric excitation of magnetic resonance of the SRR arrays. In addition, the influences of background substrate, lattice constant, and the shapes of the SRRs on the terahertz resonance are experimentally investigated and agree well with the results of recent numerical studies.  相似文献   

20.
Fabrication of terahertz metamaterials by laser printing   总被引:1,自引:0,他引:1  
A laser printing technique was used to fabricate split-ring resonators (SRRs) on Si substrates for terahertz (THz) metamaterials and their resonance behavior evaluated by THz time-domain spectroscopy. The laser-printed Ag SRRs exhibited sharp edge definition and excellent thickness uniformity, which resulted in an electromagnetic response similar to that from identical Au SRR structures prepared by conventional photolithography. These results demonstrate that laser printing is a practical alternative to conventional photolithography for fabricating metamaterial structures at terahertz frequencies, since it allows their design to be easily modified and optimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号