首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

2.
On the basis of the 120×120 complete energy matrices for a d3 configuration ion in a trigonal ligand field, for Cr3+ ions doped in MgTiO3 and LiTaO3, the local structures and EPR g factors of the octahedral (CrO6)9− clusters have been studied, respectively. By simulating the calculated optical spectra and the EPR spectra data to the experimental results, local structure parameters are obtained. The calculated results show that although the local lattice structures around the M (M=Mg2+, Ta5+) ions are obviously different, after Cr3+ replacing the M, the local lattice structures around the Cr3+ ions are quite similar and close to those of the Cr2O3. This may be ascribed to the fact that the octahedral Cr3+ center in MgTiO3:Cr3+ and LiTaO3:Cr3+ systems and that in Cr2O3 exhibit similar octahedral (CrO6)9− clusters. Moreover, the corresponding theoretical values of the optical spectra have been reported. It is also found that the orbital reduction factor k is very important to understand the EPR g factors for Cr3+ ions doped in MgTiO3 and LiTaO3.  相似文献   

3.
A single-crystal TlGaSe2 doped by paramagnetic Fe ions has been studied at room temperature by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet (S=5/2, L=0) of Fe3+ ion, which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe3+ centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe3+ site and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of GaSe4 tetrahedrons, and the rhombic distortion of the CF is caused by the Tl ions located in the trigonal cavities between the tetrahedral complexes.  相似文献   

4.
EPR spectra of VO2+ ions doped in KZnClSO4·3H2O single crystals have been studied at different temperatures. The EPR spectrum shows a well-resolved hyperfine and superhyperfine structure patterns. The angular variation of EPR spectra reveals the presence of more than three magnetic complexes, which correspond to distinct sites of VO2+ ion. From the angular variation EPR data, the spin-Hamiltonian parameters are evaluated and discussed. The optical absorption spectrum studied at room temperature shows bands corresponding to C4v symmetry. From the EPR and optical data, the molecular-orbital bonding coefficient ε2 and β2 are evaluated and discussed. The observed five-line superhyperfine structure has been attributed to four protons (with I=1/2) from the surrounding water molecules of one of the vanadyl sites.  相似文献   

5.
Optical absorption, Electron Paramagnetic Resonance (EPR) studies are carried out on lead zinc phosphate glass systems doped with Cr3+ and VO2+. From optical absorption investigations the crystal-field parameters Dq, B and C are evaluated. EPR measurements on Cr3+ systems indicate that Cr3+ ions are located at sites with low symmetry. EPR spectra of vanadyl doped system revealed the characteristic nature of vanadyl ion. Spin-Hamiltonian and hyperfine values are evaluated for both the systems. Optical absorption spectra of vanadyl doped system revealed three bands that are characteristic of VO(II) ion in tetragonally distorted octahedral site. By correlating both EPR and optical data, the dipolar coupling constant (P) and Fermi-constant coupling parameter (κ) and molecular orbital coefficients β?2, eπ?2 are evaluated. Electron Paramagnetic Resonance and optical absorption studies showed that the chemical bonds of Cr3+ ions and VO2+ ions with the ligands have more covalent nature. From these studies it is also observed that lead spinals are playing major key role in sustaining the covalent nature of bonding.  相似文献   

6.
In this work, the complete matrix of optical spectral levels in trigonal symmetry of 3d2 (3d8) ions are established on basis of strong field coupling mechanism by using two spin–orbit coupling parameters model. The contribution of the spin–orbit coupling of ligand to the optical spectra has been included in these formulas. As an application, the optical spectra of Cr4+ in Y2Ti2O7 and Y2Sn2O7 have been studied by the complete diagonalization (energy matrix) method. The covalent effect has been studied and the difficulty about Dq parameter in explanation of optical spectra of Cr-doped Y2Ti2O7 and Y2Sn2O7 is removed. The theoretical results are in good agreement with observed data.  相似文献   

7.
Electron paramagnetic resonance (EPR) investigations has been carried out on the new family of molybdenum doped vanadium sesquioxides (V1−xMox)2−δO3. The oxidation effects were monitored from the rate of paramagnetic V4+ created when the sample is exposed to the air. The effects of the oxidation time, sample temperature, and annealing at 1000 °C under a diluted hydrogen atmosphere on the EPR signal features are analyzed. The V4+ concentration in the oxidized samples is determined and the relaxation effects driven by the conduction electrons are pointed out from the thermal behaviour of the EPR line features. EPR spectra of all the oxidized samples also reveal a small ferromagnetic contribution strongly correlated with the V4+ content.  相似文献   

8.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

9.
EPR and optical absorption studies on Fe3+ and Mn2+ doped strontium tetraborate (SrB4O7) glasses are carried out at room temperature. The EPR spectrum of the Fe3+ doped glass consists of signals with g-values 9.04, 4.22 and 2.04, whereas the EPR spectrum of Mn2+ doped glass exhibits a characteristic hyperfine sextet around g=2.0. The spectroscopic analyses of the obtained results confirmed distorted octahedral site symmetry for the Fe3+ and Mn2+ impurity ions. Crystal field and Racah parameters evaluated from optical absorption spectra are: Dq=790, B=700 and C=3000 cm−1 for Fe3+doped glass and Dq=880, B=700 and C=2975 cm−1 for Mn2+ doped glass.  相似文献   

10.
Li2O-ZrO2-SiO2: Ho3+ glasses mixed with three interesting d-block elemental oxides, viz., Nb2O5, Ta2O5 and La2O3, were prepared. Optical absorption and photoluminescence spectra of these glasses have been recorded at room temperature. The luminescence spectra of Nb2O5 and Ta2O5 mixed Li2O-ZrO2-SiO2 glasses (free of Ho3+ ions) have also exhibited broad emission band in the blue region. This band is attributed to radiative recombination of self-trapped excitons (STEs) localized on substitutionally positioned octahedral Ta5+ and Nb5+ ions in the glass network. The Judd-Ofelt theory was successfully applied to characterize Ho3+ spectra of all the three glasses. From this theory various radiative properties, like transition probability A, branching ratio βr and the radiative lifetime τr, for 5S2 emission levels in the spectra of these glasses have been evaluated. The radiative lifetime for 5S2 level of Ho3+ ions has also been measured and quantum efficiencies were estimated. Among the three glasses studied the La2O3 mixed glass exhibited the highest quantum efficiency. The reasons for such higher value have been discussed based on the relationship between the structural modifications taking place around the Ho3+ ions.  相似文献   

11.
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+,Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f65d1-8S7/2 transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.  相似文献   

12.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

13.
The local lattice structure and EPR parameters (D, g, g) have been studied systematically on the basis of the complete energy matrix for a d3 configuration ion in a trigonal ligand field. By simulating the calculated optical and EPR spectra data to the experimental results, the local distortion parameters (ΔR, Δθ) are determined for V2+ ions in CdCl2 and CsMgCl3 crystals, respectively. The results show that the local lattice structure of CdCl2:V2+ system exhibits a compression distortion (ΔR=−0.0868 Å) while that of CsMgCl3:V2+ system exists an elongation distortion (ΔR=0.0165 Å). The different distortion may be ascribed to the fact that the radius of V2+ ion is smaller than that of Cd2+ ion or larger than that of Mg2+ ion. Moreover, the relationships between EPR parameter D and local structure parameters (R, θ) as well as the orbital reduction factor k and gfactors (g, g) are discussed.  相似文献   

14.
Electron paramagnetic resonance (EPR) and optical absorption spectral investigations have been carried out on Fe3+ ions doped sodium borophosphate glasses (NaH2PO4-B2O3-Fe2O3). The EPR spectra exhibit resonance signals with effective g values at g=2.02, g=4.2 and g=6.4. The resonance signal at g=4.2 is due to isolated Fe3+ ions in site with rhombic symmetry whereas the g=2.02 resonance is due to Fe3+ ions coupled by exchange interaction in a distorted octahedral environment. The EPR spectra at different temperatures (123-295 K) have also been studied. The intensity of the resonance signals decreases with increase in temperature whereas linewidth is found to be independent of temperature. The paramagnetic susceptibility (χ) was calculated from the EPR data at various temperatures and the Curie constant (C) and paramagnetic Curie temperature (θp) have been evaluated from the 1/χ versus T graph. The optical absorption spectrum exhibits bands characteristic of Fe3+ ions in octahedral symmetry. The crystal field parameter (Dq) and the Racah interelectronic repulsion parameters (B and C) have also been evaluated and discussed.  相似文献   

15.
Results of Electron Paramagnetic Resonance (EPR) and optical absorption studies of VO2+ ion doped in struvite at room liquid nitrogen temperatures are reported. Three preferential V=O bond directions in the crystal have been identified. The optical and EPR data have shown the formation of NH4(PO4VO(H2O)5 complex in the crystal as a result of VO2+ doping. Correlating the optical and EPR data the molecular orbital coefficients are also obtained and discussed.  相似文献   

16.
The electronic energy levels of the six-fold coordinated Cr4+ ion in the pyrochlores Y2B2O7 (B=Sn4+, Ti4+), have been computed using the exchange charge model of crystal field theory. The calculated Cr4+ energy levels and their trigonal splitting are in good agreement with experimental spectra. Calculations of the crystal field parameters show that the higher crystal field strength in Y2Sn2O7 (in comparison with Y2Ti2O7) arises from increased orbital overlap effects between the Cr4+ ion and the nearest oxygen ions, which are located at the 48f crystallographic position of the pyrochlore lattice. The increased overlap in Y2Sn2O7 occurs despite the fact that the Cr4+-O2- bond distance in Y2Sn2O7 is longer than in Y2Ti2O7. This is attributed to a lack of hybridization (covalent bonding) between the filled 2p orbital of oxygen ion occupying the 48f site of the pyrochlore lattice and the filled Sn4+ 4d10 orbital. As a result, a stronger crystal field is experienced by Cr4+ ions in Y2Sn2O7, even if the Cr4+-O2− distances are greater in this case, when compared to those in Y2Ti2O7.  相似文献   

17.
Electron spin resonance spectra of Mn2+ in diluted solid solutions of MnO2 in Y2O3 have been studied at room temperature for Mn concentrations between 0.20 and 2.00 mol%. Isolated Mn2+ ions in sites with two different symmetries were observed, as well as Mn2+ ions coupled by the exchange interaction. The relative concentration of isolated to coupled Mn2+ ions decreases with increasing manganese concentration. The results are consistent with the assumption that the manganese ions occupy preferentially the C2 symmetry sites. A theoretical calculation based on this model yields an effective range of the exchange interaction between Mn2+ ions of 0.53 nm, of the same order as that of Mn2+ ions in CaO.  相似文献   

18.
Nanostructured samples of yttrium iron garnet Y3Fe5O12 obtained by plastic deformation method (high-pressure torsion) were studied with help of soft X-ray absorption spectroscopy using Fe 2p and O 1s spectra. Experimental spectra were compared with crystal field multiplet calculations for Fe ions. Some amount of Fe2+ ions in nanostructured Y3Fe5O12 was found. The concentration of Fe2+ ions was found to be increased with the increase of the degree of plastic deformation.  相似文献   

19.
Yttrium aluminum garnet (Y3Al5O12) and Mn activated Y3Al5O12 phosphors have been prepared by urea combustion route in less than 5 min. The phosphors are well characterized by powder X-ray diffraction, Scanning electron microscopy and Fourier-transform infrared spectroscopic techniques. Photoluminescence tests on the pure Y3Al5O12 showed a strong green emission at 525 nm (2.36 eV) attributed to the strongly allowed transition of F+ center whereas in Mn2+ activated YAG the green emission at 519 nm is due to the 4T1 (G)→6A1 (S) transition of Mn2+ ions. EPR studies have been carried out on Mn2+ activated Y3Al5O12 phosphor at 300 and 110 K. From EPR spectra the spin-Hamiltonian parameters have been evaluated. The magnitude of the hyperfine splitting (A) indicates that the Mn2+ ions are in a moderately ionic environment. The spin concentration (N) and paramagnetic susceptibility (χ) have been evaluated and discussed.  相似文献   

20.
TlGaS2 single crystal doped by paramagnetic Fe3+ ions has been studied by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra reveal a nearly orthorhombic symmetry of the crystal field (CF) on the Fe3+ ions. Two groups each consisting of four equivalent Fe3+ centers were observed in the EPR spectra. The local symmetry of the crystal field on the Fe3+ centers and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of the GaS4 tetrahedrons. The rhombic distortion of the sulfur ligand CF is attributed to the effect of Tl ions located in the trigonal cavities between the tetrahedral complexes. The observed twinning of the resonance lines indicates a presence of two non-equivalent positions of Tl ions that confirms their zigzag alignment in the TlGaS2 crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号