首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 281 毫秒

1.  基于压缩感知和改进自适应正交匹配的稀疏信号重构  
   张宗福《应用声学》,2014年第22卷第5期
   针对传统香农-奈奎斯特采样定理指出在保证原始信号重构精度的前提下,采样频率必须为原始信号频率的2倍,提出了一种基于压缩感知理论和改进的自适应正交匹配追踪算法的稀疏信号重构方法;首先引入了压缩感知模型和信号重构目标函数,然后在对经典正交匹配追踪类算法进行分析和总结的基础上,为克服其不足,设计了一种二次筛选支配原子集的方法,即通过计算信号的QR分解并计算具有最大势能的原子从而得到能量候选原子集,通过计算余量与原子的相关性选出相关性最大的原子从而得到相关候选原子集,并将能量候选原子集和相关候选原子集的交集作为最终支配原子集;最后定义了具体的采用自适应正交匹配算法实现信号重构的算法;在Matlab仿真环境下试验,结果表明:文章方法能有效地进行稀疏信号重构,具有较小的重构误差,且与其它方法相比,具有收敛速度快和重构效果好的优点。    

2.  基于离散余弦变换的语音压缩采样和编码算法  
   武朋辉  杨百龙  时磊《应用声学》,2015年第34卷第1期
   针对语音无线通信中带宽资源受限的问题,提出基于压缩采样的低速率语音编码算法。以基尼系数为指标,比较不同稀疏变换域下语音信号的稀疏性,分析常见重构算法对语音信号压缩采样观测信号的重构特性。对标准耳蜗滤波器——伽马啁啾滤波器组的参数进行研究,并以梯度投影稀疏重建(GPSR)算法重构语音信号。利用语音质量感知评估(PESQ)、信噪比和主观听觉测试,对编解码后的合成语音信号进行了质量评估。实验表明,基于压缩感知的语音编码器以4 kbps的低速率对语音进行编码时,PESQ得分可达到3.16,计算复杂度相对较低,可以用于实际的语音编码环境。    

3.  基于压缩感知的欠定源信号恢复算法比较  
   王川川  曾勇虎  汪连栋《强激光与粒子束》,2018年第5期
   构建了基于压缩感知的欠定盲源分离源信号恢复模型,比较研究了基于互补匹配追踪算法(CMP)、基于L1范数的互补匹配追踪算法(L1CMP)和基于修正牛顿的径向基函数算法(NRASR)实现欠定源信号恢复的应用效果。结果表明:源信号时域充分稀疏情况下,CMP,L1CMP和NRASR的恢复效果接近,但L1CMP算法计算复杂度最低;变换域充分稀疏情况下,CMP和L1CMP恢复效果接近,NRASR恢复效果较差;时域非充分稀疏情况下,CMP效果较差,L1CMP和NRASR效果接近。综合考虑,L1CMP算法效果最佳;在观测信号数和源数较少的情况下,算法在时域恢复信号精度会下降;稀疏表示法结合压缩感知重构能够提高源信号恢复的效果。    

4.  基于稀疏编码和禁忌优化的故障信号抽取方法  
   周晏  王璐《应用声学》,2014年第22卷第7期
   为了克服经典正交匹配算法获取原子集时遍历冗余字典具有较大时间开销的缺点,提出了一种基于压缩感知理论和禁忌优化算法的的稀疏故障信号特征提取方法;首先引入了压缩感知模型并描述了基于信号稀疏表示的故障诊断原理,设计了满足RIP准则以最小化l1范数为目标的稀疏信号解的求解方法,然后定义了一种基于正交匹配算法的稀疏信号重构算法,并以最小化余量为目标函数,采用改进的禁忌搜索算法在原子空间中搜索满足目标函数的最优原子集,最后,给出了基于稀疏编码和禁忌优化混合模型的故障信号提取算法;在Matlab仿真环境下对滚动轴承故障信号进行试验,仿真结果表明:文章方法能有效地对具有强噪声的故障信号进行稀疏重构,不仅具有较高的信噪比,而且具有较小的余量误差和仿真时间,与其它方法相比,具有较大的优越性。     

5.  面向低信噪比的自适应压缩感知方法  
   文方青  张弓  陶宇  刘苏  冯俊杰《物理学报》,2015年第64卷第8期
   在压缩感知工程应用中, 信号往往被噪声和干扰所影响, 常规的压缩感知方法难以达到理想的重构效果, 特别是低信噪比应用场景中, 稀疏重构往往会失效. 分析了压缩感知中噪声对重构性能的影响, 从理论上解释了压缩感知中的噪声折叠原理, 并在此基础上提出了一种基于方向性测量的自适应压缩感知方案. 该方案通过后端信号处理系统估计出噪声的相关信息并反馈至压缩感知前端, 前端根据反馈的噪声信息调整测量矩阵, 从而改变感知矩阵的方向, 自适应地感知稀疏谱, 从而有效地抑制信号噪声. 仿真实验表明, 所提的自适应压缩感知方法对稀疏信号重构性能有较大的提升.    

6.  一种分块图像的BP压缩感知重构算法  
   刘继忠  郑恩涛  贺艳涛  付珊珊  赵鹏《新疆大学学报(理工版)》,2018年第3期
   在图像压缩感知重构中,针对重构效果和耗时不兼得的问题进行深入研究.基于离散余弦基稀疏表示,选用随机高斯矩阵进行观测采样,针对基追踪(BP)重构算法精度相对较高同时计算复杂度也高的特点,结合图像分块可以提高运算速度和精度这一优点,提出一种基于分块图像的基追踪(BP)重构算法,并与常用的正交匹配追踪OMP算法、BP算法、COSAMP算法、基于分块图像的压缩采样匹配追踪(COSAMP)算法、基于过完备字典(KSVD)的OMP重构算法和基于过完备字典(KSVD)的BP重构算法进行对比;借助MATLAB进行仿真实验,得到不同采样率下的重构图像以及重构图像的峰值信噪比和运行时间.实验结果表明:基于分块图像的基追踪(BP)重构算法不但峰值信噪比(PSNR)比普通算法高出1~10d B不等,而且运行时间比较短,所以本文所提算法兼顾了重构精度和运算效率.另外,对本文所提算法分块大小、稀疏度设置多大为最优这两个问题进行大量重复实验,最后确定分块大小为8*8、稀疏度设置为图像矩阵(N*N)原维度N的0.2~0.4倍时为最优.    

7.  基于l1-l2范数的块稀疏信号重构  
   陈鹏清  黄尉《应用数学和力学》,2017年第8期
   压缩感知(compressed sensing,CS)是一种全新的信息采集与处理的理论框架,借助信号内在的稀疏性或可压缩性,可以从小规模的线性、非自适应的测量中通过求解非线性优化问题重构原信号.块稀疏信号是一种具有块结构的信号,即信号的非零元是成块出现的.受YIN Peng-hang,LOU Yi-fei,HE Qi等提出的l1-2范数最小化方法的启发,将基于l1-l2范数的稀疏重构算法推广到块稀疏模型,证明了块稀疏模型下l1-l2范数的相关性质,建立了基于l1-l2范数的块稀疏信号精确重构的充分条件,并通过DCA(difference of convex functions algorithm)和ADMM(alternating direction method of multipliers)给出了求解块稀疏模型下l1-l2范数的迭代方法.数值实验表明,基于l1-l2范数的块稀疏重构算法比其他块稀疏重构算法具有更高的重构成功率.    

8.  基于CS的低压电力线载波通信信道估计  
   齐萌  赵利国《应用声学》,2016年第24卷第9期
   针对低压电力线通信环境多径干扰的特点,建立了正交频分复用的压缩感知信道估计模型,将信道估计转换为压缩感知理论中稀疏度未知的号重构问题,首次采用压缩感知的稀疏自适应匹配追踪方法重构出低压电力线载波通信多径信道的冲击响应。仿真表明与其它常用信道估计算法相比,所提出的压缩感知信道估计算法在频谱利用率以及估计性能方面比传统方法有显著提高,在未知稀疏度的情况下,为低压电力线载波通信系统提供了一种稳定、可行的信道估计方案。    

9.  基于压缩感知的低压电力线载波通信信道估计  
   齐萌  赵利国《应用声学》,2016年第24卷第9期
   针对低压电力线通信环境多径干扰的特点,建立了正交频分复用的压缩感知信道估计模型,将信道估计转换为压缩感知理论中稀疏度未知的号重构问题,首次采用压缩感知的稀疏自适应匹配追踪方法重构出低压电力线载波通信多径信道的冲击响应;仿真表明与其它常用信道估计算法相比,所提出的压缩感知信道估计算法在频谱利用率以及估计性能方面比传统方法有显著提高,在未知稀疏度的情况下,为低压电力线载波通信系统提供了一种稳定、可行的信道估计方案。    

10.  基于改进的稀疏度自适应匹配追踪算法的宽带压缩频谱感知(英文)  
   焦传海  李永成《强激光与粒子束》,2018年第3期
   针对在实际宽带压缩频谱感知中难以预先获知宽带频谱稀疏度的问题,提出一种改进的稀疏度自适应匹配追踪(modified sparsity adaptive matching pursuit,MSAMP)算法,该算法在支撑集选择过程中对稀疏度进行了预估计。结合序贯压缩检测技术,给出了一种基于该算法的多认知用户合作场景下的宽带压缩频谱感知方法,理论分析和实验仿真结果表明,该方法可在频谱稀疏度先验知识缺少的情况下,有效提高宽带频谱感知性能。    

11.  基于压缩感知和粒子滤波的OFDM超宽信道估计  
   马永强  孙伟《应用声学》,2015年第23卷第6期
   针对通信系统中的正交频分复用(Orthogonal frequency division multiplexing, OFDM)超宽信道具有的稀疏多径和含噪声特征,将信道估计问题转换为稀疏信号的重构和优化问题,设计了一种基于压缩感知理论和粒子滤波的OFDM信道估计方法。首先定义和描述了OFDM数学模型;然后在对压缩感知理论模型研究的基础上,采用改进的正交匹配算法对OFDM超宽信道进行重构,为了进一步减少信道重构的误差,将由于正交匹配算法得到的重构信道作为初始的粒子,并将OFDM数学模型转换为动态参数模型,并通过粒子滤波来更新模型中的参数和频率响应,通过不断迭代获得信道的估计值。为了验证文中方法的优越性,将文中方法与经典的正交匹配算法与粒子滤波算法进行比较,结果表明:文中方法能有效地对含噪声的稀疏信号进行估计,具有较小的重构误差,且与其它方法相比,具有较小的归一化均方误差。    

12.  基于字典学习方法的CT不完全投影图像重建算法  
   赵可  潘晋孝  孔慧华《数学的实践与认识》,2014年第2期
   对于不完全投影角度的重建研究是CT图像重建中一个重要的问题.将压缩感知中字典学习的方法与CT重建算法ART迭代算法相结合.字典学习方法中字典更新采用K-SVD(K-奇异值分解)算法,稀疏编码采用OMP(正交匹配追踪)算法.最后通过对标准Head头部模型进行仿真实验,验证了字典学习方法在CT图像重建中对于提高图像的重建质量和提高信噪比的可行性与有效性.另外还研究了字典学习中图像块大小和滑动距离对重建图像的影响    

13.  一种基于选择性测量的自适应压缩感知方法  
   康荣宗  田鹏武  于宏毅《物理学报》,2014年第63卷第20期
   针对低信噪比条件下现有压缩感知系统重构性能严重恶化的问题,提出了一种基于选择性测量的自适应压缩感知结构. 首先推导并分析了经过压缩测量的噪声的统计特性及其对重构性能的影响;然后基于输出能量最小化准则,设计了一种压缩域投影滤波联合噪声检测的自适应感知器,感知获得噪声子空间的位置信息;进一步利用该信息构造选择性压缩测量矩阵,智能选择测量信号,同时“屏蔽”噪声分量,极大提高了压缩测量值的信噪比. 仿真结果表明,相对于现有压缩感知结构,选择性测量的压缩感知结构明显改善了含噪稀疏信号的重构性能,可更好地应用于吸波材料的前端特性分析、认知无线电的频谱感知等领域. 关键词: 频谱感知 压缩感知 信号重构 选择性测量    

14.  基于渐进添边的准循环压缩感知时延估计算法  
   冷雪冬  王大鸣  巴斌  王建辉《物理学报》,2017年第66卷第9期
   针对时延估计问题中压缩感知类算法现有测量矩阵需要大量数据存储量的问题,提出了一种基于渐进添边的准循环压缩感知时延估计算法,实现了稀疏测量矩阵条件下接收信号时延的准确估计.该算法首先建立压缩感知与最大似然译码之间的理论桥梁,然后推导基于低密度奇偶校验码的测量矩阵的设计准则,引入渐进添边的思想构造具有准循环结构的稀疏测量矩阵,最后利用正交匹配追踪算法正确估计出时延.对本文算法的计算复杂度与测量矩阵的数据存储量进行理论分析.仿真结果表明,所提算法在测量矩阵维数相同的条件下正确重构概率高于高斯随机矩阵和随机奇偶校验测量矩阵,相比于随机奇偶校验矩阵,在数据存储量相等的条件下,以较少的计算复杂度代价得到了重构概率的较大提高.    

15.  基于lp范数的压缩感知图像重建算法研究  
   宁方立  何碧静  韦娟《物理学报》,2013年第62卷第17期
   图像重建是光学成像、光声成像、声纳成像、核磁共振成像、 天体成像等物理成像领域中的关键技术之一. 近年来提出的压缩感知理论指出: 对稀疏或者可压缩信号进行少量非自适应线性投影,投影信号含有足够的信息, 从而能对信号进行高概率重建. 压缩感知已被应用于多种物理成像系统. 将罚函数法和修正Hesse阵序列二次规划方法相结合, 并采用了分块压缩感知思想, 提出一种基于lp范数的压缩感知图像重建算法. 以cameraman, barbara和mandrill图像为例, 采用该算法进行图像重建. 首先, 在不同采样率下对图像重建. 即便采样率低至0.3时, 也能获得高达32.23dB的信噪比, 重建图像清晰可辨. 验证了该算法的正确性. 其次, 将该算法与正交匹配追踪算法进行对比, 在采样率达到0.5以上时, 能够获得高信噪比的重建图像, 成像时间也大为减少, 特别是采样率为0.7时, 成像时间减少88%. 最后, 与现有基于lp 范数的压缩感知图像重建算法进行对比, 计算结果表明在成像质量有所提高的基础上, 成像时间大为缩短. 关键词: 图像重建 压缩感知 罚函数 修正Hesse阵序列二次规划    

16.  基于OMP算法的图像重构研究与FPGA实现  
   陈宁  阎琳  邱岳恒《应用声学》,2014年第22卷第9期
   针对高分辨率的图像在采集过程中存在数据量较大的问题,提出了一种基于正交匹配追踪(OMP)算法的图像重构方法,设计了OMP算法的硬件结构,并在FPGA平台上进行了仿真验证;首先,研究了压缩感知算法的基本原理;然后,分别基于匹配追踪算法(MP)和正交匹配追踪算法实现了图像的重构;最后,通过仿真对比分析了这两种方法的图像重构结果,OMP算法误差在10-15量级,明显优于MP算法的10-3误差量级,并且OMP算法的迭代收敛性也优于MP算法。    

17.  一种强噪声背景下微弱超声信号提取方法研究  
   王大为  王召巴《物理学报》,2018年第67卷第21期
   为解决在强噪声背景下获取超声信号的难题,基于粒子群优化算法和稀疏分解理论提出一种强噪声背景下微弱超声信号提取方法.该方法将降噪问题转换为在无穷大参数集上对函数进行优化的问题,首先以稀疏分解理论和超声信号的结构特点为依据构建了粒子群优化算法运行所需要的目标函数及去噪后信号的重构函数,从而将粒子群优化算法和超声信号降噪联系在一起;然后根据粒子群优化算法可以在连续参数空间寻优的特点建立了用于匹配超声信号的连续超完备字典,并采用改进的自适应粒子群优化算法在该字典中对目标函数进行优化;最后根据对目标函数在字典上的优化结果确定最优原子,并利用最优原子按照重构函数重构出降噪后的超声信号.通过对仿真超声信号和实测超声信号的处理,结果表明本文提出的方法可以有效提取信噪比低至-4 dB的强噪声背景下的微弱超声信号,且和基于自适应阈值的小波方法相比本文方法表现出更好的降噪性能.    

18.  倒谱参数稀疏分解下的汉语音谎言检测  
   樊晓鹤  赵鹤鸣  陈雪勤  周燕《声学学报》,2018年第1期
   为了提高汉语语音的谎言检测准确率,提出了一种对信号倒谱参数进行稀疏分解的方法。首先,采用小波包滤波器组对语音信号进行多频带划分,求得子频带对数能量并进行离散余弦变换以提取小波包频带倒谱系数,结合梅尔频率谱系数得到倒谱参数;其次,依据K-奇异值分解方法分别利用说谎和非说谎两种状态下的语音倒谱参数集训练得到过完备混合字典,在此字典上根据正交匹配追踪算法对参数集进行稀疏编码提取稀疏特征;最终进行多种分类模型下的识别实验·实验结果表明,稀疏分解方法相比传统参数降维方法具有更好的优化性能,本文推荐的稀疏谱特征最佳识别率达到78.34%,优于其他特征参数,显著提高了谎言检测识别准确率。    

19.  分块稀疏信号1-bit压缩感知重建方法  
   丰卉  孙彪  马书根《物理学报》,2017年第66卷第18期
   1-bit压缩感知理论指出:对稀疏信号进行少量线性投影并对投影信号进行1-bit量化,该1-bit信号包含足够的信息,从而能对原始信号进行高精度重建.然而,当信号难以进行稀疏表达时,传统1-bit压缩感知算法无法精确重建原始信号.前期研究表明,分块稀疏模型作为一种特殊的结构型稀疏模型,对于难以用传统稀疏模型进行表达的信号具有较好的表达作用.本文提出了一种针对分块稀疏信号的1-bit压缩感知重建方法,该方法利用分块稀疏的统计特性对信号进行数学建模,通过变分贝叶斯推断方法进行信号重建并在光电容积脉搏波(photoplethysmography)信号上进行了实验验证.实验结果表明,与现有1-bit压缩感知重建方法相比,本文方法重建精度更高,且收敛速度更快.    

20.  匹配追踪说话人自适应方法  
   张文林  屈丹  李弼程《声学学报》,2014年第4期
   针对现有子空间自适应方法无法确定最佳说话人子空间的问题,提出一种基于匹配追踪的说话人自适应方法。将说话人自适应视为一种高维信号的稀疏分解问题,利用本征音和参考说话人超矢量的各自优势联合构造说话人字典;依据匹配追踪原理,通过迭代优化,以后验方式确定最佳说话人子空间维数及其基矢量。引入冗余基矢量检测与去除机制以保证算法的稳定性,并通过快速递推算法得到新说话人坐标。基于汉语连续语音识别的有监督说话人自适应实验结果表明,与本征音及参考说话人加权方法相比,平均有调音节正识率相对提高了1.9%。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号